Cellular Distribution of Lysyl-tRNA Synthetase and Its Interaction with Gag during Human Immunodeficiency Virus Type 1 Assembly

Author:

Halwani Rabih12,Cen Shan1,Javanbakht Hassan12,Saadatmand Jenan12,Kim Sunghoon3,Shiba Kiyotaka4,Kleiman Lawrence125

Affiliation:

1. Lady Davis Institute for Medical Research and McGill AIDS Center, Jewish General Hospital

2. Departments of Medicine

3. National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, Shillim-dong, Kwanak-Gu, Seoul 151-741, Republic of Korea

4. Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Kami-Ikebukuro, Toshima-ku, Tokyo 170, Japan

5. Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3T 1E2

Abstract

ABSTRACT Lysyl-tRNA synthetase (LysRS) is packaged into human immunodeficiency virus type 1 (HIV-1) via its interaction with Gag, and this enzyme facilitates the selective packaging of tRNA 3 Lys , the primer for initiating reverse transcription, into HIV-1. The Gag/LysRS interaction is detected at detergent-resistant membrane but not in membrane-free cell compartments that contain Gag and LysRS. LysRS is found (i) in the nucleus, (ii) in a cytoplasmic high-molecular-weight aminoacyl-tRNA synthetase complex (HMW aaRS complex), (iii) in mitochondria, and (iv) associated with plasma membrane. The cytoplasmic form of LysRS lacking the mitochondrial import signal was previously shown to be efficiently packaged into virions, and in this report we also show that LysRS compartments in nuclei, in the HMW aaRS complex, and at the membrane are also not required as a primary source for viral LysRS. Exogenous mutant LysRS species unable to either enter the nucleus or bind to the cell membrane are still incorporated into virions. Many HMW aaRS components are not packaged into the virion along with LysRS, and the interaction of LysRS with p38, a protein that binds tightly to LysRS in the HMW aaRS complex, is not required for the incorporation of LysRS into virions. These data indicate that newly synthesized LysRS may interact rapidly with Gag before the enzyme has the opportunity to move to the above-mentioned cellular compartments. In confirmation of this idea, we found that newly synthesized LysRS is associated with Gag after a 10-min pulse with [ 35 S]cysteine/methionine. This observation is also supported by previous work indicating that the incorporation of LysRS into HIV-1 is very sensitive to the inhibition of new synthesis of LysRS.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3