The 14-3-3 Protein Homolog ArtA Regulates Development and Secondary Metabolism in the Opportunistic Plant Pathogen Aspergillus flavus

Author:

Ibarra Beatriz A.1,Lohmar Jessica M.1,Satterlee Timothy1,McDonald Taylor1,Cary Jeffrey W.2,Calvo Ana M.1

Affiliation:

1. Department of Biological Sciences, Northern Illinois University, DeKalb, Ilinois, USA

2. Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA

Abstract

ABSTRACT The opportunistic plant-pathogenic fungus Aspergillus flavus produces carcinogenic mycotoxins termed aflatoxins (AF). Aflatoxin contamination of agriculturally important crops, such as maize, peanut, sorghum, and tree nuts, is responsible for serious adverse health and economic impacts worldwide. In order to identify possible genetic targets to reduce AF contamination, we have characterized the artA gene, encoding a putative 14-3-3 homolog in A. flavus . The artA deletion mutant presents a slight decrease in vegetative growth and alterations in morphological development and secondary metabolism. Specifically, artA affects conidiation, and this effect is influenced by the type of substrate and culture condition. In addition, normal levels of artA are required for sclerotial development. Importantly, artA negatively regulates AF production as well as the concomitant expression of genes in the AF gene cluster. An increase in AF is also observed in seeds infected with the A. flavus strain lacking artA . Furthermore, the expression of other secondary metabolite genes is also artA dependent, including genes in the cyclopiazonic acid (CPA) and ustiloxin gene clusters, in this agriculturally important fungus. IMPORTANCE In the current study, artA , which encodes a 14-3-3 homolog, was characterized in the agriculturally and medically important fungus Aspergillus flavus , specifically, its possible role governing sporulation, formation of resistant structures, and secondary metabolism. The highly conserved artA is necessary for normal fungal morphogenesis in an environment-dependent manner, affecting the balance between production of conidiophores and the formation of resistant structures that are necessary for the dissemination and survival of this opportunistic pathogen. This study reports a 14-3-3 protein affecting secondary metabolism in filamentous fungi. Importantly, artA regulates the biosynthesis of the potent carcinogenic compound aflatoxin B1 (AFB1) as well as the production of other secondary metabolites.

Funder

U.S. Department of Agriculture

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3