Characterization of a Novel Heat Shock Protein (Hsp22.5) Involved in the Pathogenesis of Mycobacterium tuberculosis

Author:

Abomoelak Bassam1,Marcus Sarah A.1,Ward Sarah K.1,Karakousis Petros C.2,Steinberg Howard1,Talaat Adel M.134

Affiliation:

1. Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, Wisconsin 53706

2. Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland

3. Department of Food Hygiene, Cairo University, Egypt

4. the Laboratory of Bacterial Genomics, Madison, Wisconsin

Abstract

ABSTRACT Tuberculosis is a worldwide health problem, given that one-third of the world's population is currently infected with Mycobacterium tuberculosis . Understanding the regulation of virulence on the molecular level will provide a better understanding of how M. tuberculosis can establish chronic infection. Using in vivo microarray analysis (IVMA), we previously identified a group of genes that are activated in BALB/c mouse lungs compared to in vitro cultures, including the rv0990c gene. Our analysis indicated that this gene is a member of the heat shock regulon and was activated under other stress conditions, including survival in macrophages or during the late phase of chronic tuberculosis in the murine lungs. Deletion of rv0990c from the genome of M. tuberculosis strain H37Rv affected the transcriptional profiles of many genes ( n = 382) and operons involved in mycobacterial survival, including the dormancy regulon, ATP synthesis, respiration, protein synthesis, and lipid metabolism. Comparison of the proteomes of the mutant to those of the wild-type strain further confirmed the differential expression of 15 proteins, especially those involved in the heat shock response (e.g., DnaK and GrpE). Finally, the rv0990c mutant strain showed survival equivalent to that of the isogenic wild-type strain during active tuberculosis in guinea pigs, despite showing significant attenuation in BALB/c mice during the chronic phase of the disease. Overall, we suggest that rv0990c encodes a heat shock protein that plays an important role in mycobacterial virulence. Hence, we renamed rv0990c heat shock protein 22.5 ( hsp22.5 ), reflecting its molecular mass.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3