Do Staphylococcus epidermidis Genetic Clusters Predict Isolation Sources?

Author:

Tolo Isaiah1,Thomas Jonathan C.2,Fischer Rebecca S. B.3,Brown Eric L.3,Gray Barry M.4,Robinson D. Ashley1

Affiliation:

1. Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA

2. Department of Biology, University of Bolton, Bolton, United Kingdom

3. Center for Infectious Disease, University of Texas Health Science Center, Houston, Texas, USA

4. Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA

Abstract

ABSTRACT Staphylococcus epidermidis is a ubiquitous colonizer of human skin and a common cause of medical device-associated infections. The extent to which the population genetic structure of S. epidermidis distinguishes commensal from pathogenic isolates is unclear. Previously, Bayesian clustering of 437 multilocus sequence types (STs) in the international database revealed a population structure of six genetic clusters (GCs) that may reflect the species' ecology. Here, we first verified the presence of six GCs, including two (GC3 and GC5) with significant admixture, in an updated database of 578 STs. Next, a single nucleotide polymorphism (SNP) assay was developed that accurately assigned 545 (94%) of 578 STs to GCs. Finally, the hypothesis that GCs could distinguish isolation sources was tested by SNP typing and GC assignment of 154 isolates from hospital patients with bacteremia and those with blood culture contaminants and from nonhospital carriage. GC5 was isolated almost exclusively from hospital sources. GC1 and GC6 were isolated from all sources but were overrepresented in isolates from nonhospital and infection sources, respectively. GC2, GC3, and GC4 were relatively rare in this collection. No association was detected between fdh -positive isolates (GC2 and GC4) and nonhospital sources. Using a machine learning algorithm, GCs predicted hospital and nonhospital sources with 80% accuracy and predicted infection and contaminant sources with 45% accuracy, which was comparable to the results seen with a combination of five genetic markers ( icaA , IS 256 , sesD [ bhp ], mecA , and arginine catabolic mobile element [ACME]). Thus, analysis of population structure with subgenomic data shows the distinction of hospital and nonhospital sources and the near-inseparability of sources within a hospital.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3