TFIIF Facilitates Dissociation of RNA Polymerase II from Noncoding RNAs That Lack a Repression Domain

Author:

Wagner Stacey D.1,Kugel Jennifer F.1,Goodrich James A.1

Affiliation:

1. Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309-0215

Abstract

ABSTRACT Noncoding RNAs (ncRNAs) have recently been found to regulate multiple steps in mammalian mRNA transcription. Mouse B2 RNA and human Alu RNA bind RNA polymerase II (Pol II) and repress mRNA transcription, using regions of the ncRNAs referred to as repression domains. Two other ncRNAs, mouse B1 RNA and human small cytoplasmic Alu (scAlu) RNA, bind Pol II with high affinity but lack repression domains and hence do not inhibit transcription. To better understand the interplay between ncRNAs that bind Pol II and their functions in transcription, we studied how Pol II binding and transcriptional repression are controlled by general transcription factors. We found that TFIIF associates with B1 RNA/Pol II and scAlu RNA/Pol II complexes and decreases their kinetic stability. Both subunits of TFIIF are required for this activity. Importantly, fusing a repression domain to B1 RNA stabilizes its interaction with Pol II in the presence of TFIIF. These results suggest a new role for TFIIF in regulating the interaction of ncRNAs with Pol II; specifically, it destabilizes interactions with ncRNAs that are not transcriptional repressors. These studies also identify a new function for ncRNA repression domains: they stabilize interactions of ncRNAs with Pol II in the presence of TFIIF.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revolution in Genetics;Neuroscience in the 21st Century;2022

2. Revolution in Genetics;Neuroscience in the 21st Century;2021

3. Non-coding RNAs As Transcriptional Regulators In Eukaryotes;ACTA NATURAE;2017

4. Long noncoding RNAs in cell differentiation and pluripotency;Cell and Tissue Research;2016-06-30

5. The Revolution in Genetic Sequencing and Analysis;Neuroscience in the 21st Century;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3