Corneal Cell Survival in Adenovirus Type 19 Infection Requires Phosphoinositide 3-Kinase/Akt Activation

Author:

Rajala Maitreyi S.1,Rajala Raju V. S.1,Astley Roger A.1,Butt Amir L.1,Chodosh James1

Affiliation:

1. Molecular Pathogenesis of Eye Infection Research Center, Dean A. McGee Eye Institute, Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

Abstract

ABSTRACT Adenovirus type 19 is a major cause of epidemic keratoconjunctivitis, the only ocular adenoviral infection associated with prolonged corneal inflammation. In this study, we investigated the role of phosphoinositide 3-kinase (PI3K) and Akt and their downstream targets in adenovirus infection, and here we report the novel finding that adenovirus type 19 utilizes the PI3K/Akt pathway to maintain corneal fibroblast viability in acute infection. We demonstrate phosphorylation of GSK-3β and nuclear translocation of the p65 subunit of NF-κB, both downstream targets of the PI3K/Akt pathway, in adenovirus-infected corneal fibroblasts in a PI3K-dependent manner. Inhibition of PI3K had no effect on early viral gene expression, suggesting normal viral internalization, but pretreatment with the PI3K inhibitor LY294002 or overexpression of dominant negative Akt induced early cytopathic effect and caspase-mediated cell death in adenovirus-infected cells. Early cell death could be circumvented despite LY294002 by overexpression of constitutively active Akt. Furthermore, we show an interaction between cSrc and the p85 regulatory subunit of PI3K in infected cells through a phosphorylation-dependent mechanism. The results presented in this paper provide the first direct evidence that PI3K-mediated Akt activation in adenovirus-infected corneal cells may contribute to viral pathogenesis by the prolongation of cell viability.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3