Equine Infectious Anemia Virus Gag p9 Function in Early Steps of Virus Infection and Provirus Production

Author:

Jin Sha1,Chen Chaoping1,Montelaro Ronald C.1

Affiliation:

1. Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261

Abstract

ABSTRACT We have previously reported that serial truncation of the Gag p9 protein of equine infectious anemia virus (EIAV) revealed a progressive loss in replication phenotypes in transfected cells, such that a proviral mutant (E32) expressing the N-terminal 31 amino acids of p9 produced infectious virus particles similarly to parental provirus, while a proviral mutant (K30) with two fewer amino acids produced replication-defective virus particles, despite containing apparently normal levels of processed Gag and Pol proteins (C. Chen, F. Li, and R. C. Montelaro, J. Virol. 75: 9762-9760, 2001). Based on these observations, we sought in the current study to identify the precise defect in K30 virion infection of permissive equine dermal (ED) cells. The results of these experiments clearly demonstrated that K30 virions entered target ED cells and produced early (minus-strand strong-stop) and late (Gag) viral DNA products as efficiently as did the replication-competent E32 mutant and parental EIAV UK viruses. However, in contrast to the replication-competent E32 mutant and parental viruses, infection with K30 mutant virus failed to produce detectable two-long-terminal-repeat DNA circles, stable integrated provirus, virus-specific Gag mRNA expression, or intracellular viral protein expression. Taken together, these data demonstrate that the K30 mutant is defective in the ability to produce sufficient nuclear viral DNA to establish a productive infection in ED cells. Thus, these observations indicate for the first time that the EIAV Gag p9 protein performs a critical role in viral DNA production and processing to provirus during EIAV infection, in addition to its previously defined role in viral budding mediated by the p9 L domain.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3