Inhibition of the Herpes Simplex Virus Type 1 DNA Polymerase Induces Hyperphosphorylation of Replication Protein A and Its Accumulation at S-Phase-Specific Sites of DNA Damage during Infection

Author:

Wilkinson Dianna E.1,Weller Sandra K.1

Affiliation:

1. Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030

Abstract

ABSTRACT The treatment of mammalian cells with genotoxic substances can trigger DNA damage responses that include the hyperphosphorylation of replication protein A (RPA), a protein that plays key roles in the recognition, signaling, and repair of damaged DNA. We have previously reported that in the presence of a viral polymerase inhibitor, herpes simplex virus type 1 (HSV-1) infection induces the hyperphosphorylation of RPA (D. E. Wilkinson and S. K. Weller, J. Virol. 78: 4783-4796, 2004). We initiated the present study to further characterize this genotoxic response to HSV-1 infection. Here we report that infection in the presence of polymerase inhibitors triggers an S-phase-specific response to DNA damage, as demonstrated by induction of the hyperphosphorylation of RPA and its accumulation within viral foci specific to the S phase of the cell cycle. This DNA damage response occurred in the presence of viral polymerase inhibitors and required the HSV-1 polymerase holoenzyme as well as the viral single-stranded-DNA binding protein. Treatment with an inhibitor of the viral helicase-primase did not induce the hyperphosphorylation of RPA or its accumulation in infected cells. Taken together, these results suggest that the S-phase-specific DNA damage response to infection is dependent on the specific inhibition of the polymerase. Finally, RPA hyperphosphorylation was not induced during productive infection, indicating that active viral replication does not trigger this potentially detrimental stress response.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3