Marked Variation in Response of Consensus Binding Elements for the Rta Protein of Epstein-Barr Virus

Author:

Chen Lee-Wen1,Chang Pey-Jium1,Delecluse Henri-Jacques2,Miller George134

Affiliation:

1. Departments of Molecular Biophysics and Biochemistry

2. Department of Tumour Virology, German Cancer Research Center, Im Neuenheimer Feld 242, Heidelberg, Germany

3. Pediatrics

4. Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut

Abstract

ABSTRACT The R transactivator (Rta) protein activates Epstein-Barr virus (EBV) lytic-cycle genes by several distinct mechanisms that include direct binding to viral promoters, synergy with BamHI Z EBV replication activator (ZEBRA), and activation of cellular signaling pathways. In the direct and synergistic mechanisms of action, Rta binds to specific DNA sequences that are present in the promoters of responsive genes. It has been difficult to demonstrate the capacity of Rta expressed in mammalian cells to bind DNA in vitro in order to study the relative affinities of Rta binding elements. We discovered that a short C-terminal region of Rta inhibits the ability of Rta to bind DNA in vitro. C-terminally truncated versions of Rta bind DNA efficiently and thus facilitate a comparison of consensus Rta binding elements (CRBEs) found in promoters of five Rta-responsive genes: BMLF1, BHLF1, BMRF1, BaRF1, and BLRF2. All CRBEs in the promoters of the five genes conform to the proposed recognition sequence GNCCN9GGNG, where N is any nucleotide and N9 represents a sequence of nine nucleotides. Nonetheless, CRBEs varied markedly in their abilities to bind Rta in electrophoretic mobility shift assays. Not all CRBEs bound or responded to Rta. Binding affinities of the CRBEs and the capacity to be activated by Rta in reporter assays were strongly correlated. The CRBEs from the BMLF1 and BHLF1 promoters conferred the greatest response. The response of the BMRF1, BaRF1, and BLRF2 CRBEs was less robust. By creation of chimeras, inversions, and point mutations, differences in binding affinities and transcriptional activation levels could be attributed to N9 sequence variation. The length of N9 was also critical for a maximal response. In Raji and BZLF1-knockout cells, the mRNAs of the five Rta-responsive lytic-cycle genes differed dramatically in kinetics of expression, abundance, and synergistic responses to ZEBRA and Rta. Affinities of Rta response elements for Rta are likely to play an important role in temporal regulation and the level of lytic-cycle EBV gene expression.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3