Role of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Immune Response to Influenza Virus Infection in Mice

Author:

Ishikawa Eri1,Nakazawa Masatoshi1,Yoshinari Masahiro1,Minami Mutsuhiko1

Affiliation:

1. Department of Immunology, Yokohama City University, School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama 236-0004, Japan

Abstract

ABSTRACT Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis of various tumor cells but not normal cells. However, various cytokines and virus infection differentially regulate TRAIL and TRAIL receptor expression. It has been demonstrated that virus infection changes the pattern of human TRAIL-receptor expression on normal cells, which were resistant to TRAIL-mediated apoptosis, and makes them susceptible to TRAIL-mediated apoptosis. Since previous studies on the function of TRAIL have been performed mainly in vitro, its physiological role in the immune response to virus infection remains unknown. In the present study, we investigated the expression of TRAIL in the lungs of influenza virus-infected mice and the function of TRAIL in the immune response to infection. Influenza virus infection increased TRAIL mRNA expression in the lung. TRAIL protein expression was induced on NK cells in the lung 4 days after infection. At 7 days after infection, TRAIL protein expression was also detected on CD4 + and CD8 + T cells. However, NK cells and T cells in the lungs of uninfected mice did not express a detectable level of TRAIL on their cell surfaces. DR5, which is a mouse TRAIL receptor, was also induced to express after virus infection. Expression of both TRAIL and DR5 mRNAs was reduced to normal level at 6 weeks after virus infection. Administration of anti-TRAIL monoclonal antibody, which blocks TRAIL without killing TRAIL-expressing cells, to mice during influenza virus infection significantly delayed virus clearance in the lung. These results suggest that TRAIL plays an important role in the immune response to virus infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3