Investigation by Atomic Force Microscopy of the Structure of Ty3 Retrotransposon Particles

Author:

Kuznetsov Yurii G.1,Zhang Min2,Menees Thomas M.3,McPherson Alexander1,Sandmeyer Suzanne2

Affiliation:

1. Departments of Molecular Biology and Biochemistry

2. Biological Chemistry, University of California, Irvine, California 92697

3. Division of Cell Biology and Biophysics, University of Missouri, Kansas City, Missouri

Abstract

ABSTRACT Ty3, a member of the Metaviridiae family of long-terminal-repeat retrotransposons found in Saccharomyces cerevisiae , encodes homologs of retroviral Gag and Gag-Pol proteins, which, together with genomic RNA, assemble into virus-like particles (VLPs) that undergo processing and reverse transcription. The Ty3 structural proteins, capsid and nucleocapsid, contain major homology and nucleocapsid motifs similar to retrovirus capsid and nucleocapsid proteins, but Ty3 lacks a matrix-like structural domain amino terminal to capsid. Mass spectrometry analysis of Ty3 Gag3 processing products defined an acetylated Ser residue as the amino terminus of Gag3/p34, p27, and CA/p24 species and supported a model where p34 and p27 occur in phosphorylated forms. Using atomic force microscopy, VLPs were imaged from cells producing wild-type and protease and reverse transcriptase mutant Ty3. Wild-type VLPs were found to have a broad range of diameters, but the majority, if not all of the particles, exhibited arrangements of capsomeres on their surfaces which were consistent with icosahedral symmetry. Wild-type particles were in the range of 25 to 52 nm in diameter, with particles in the 42- to 52-nm diameter range consistent with T=7 symmetry. Both classes of mutant VLPs fell into a narrower range of 44 to 53 nm in diameter and appeared to be consistent with T=7 icosahedral symmetry. The smaller particles in the wild-type population likely correspond to VLPs that have progressed to reverse transcription or later stages, which do not occur in the protease and reverse transcriptase mutants. Ty3 VLPs did not undergo major external rearrangements during proteolytic maturation.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3