Virus Isolates during Acute and Chronic Human Immunodeficiency Virus Type 1 Infection Show Distinct Patterns of Sensitivity to Entry Inhibitors
-
Published:2005-07
Issue:13
Volume:79
Page:8454-8469
-
ISSN:0022-538X
-
Container-title:Journal of Virology
-
language:en
-
Short-container-title:J Virol
Author:
Rusert Peter1, Kuster Herbert1, Joos Beda1, Misselwitz Benjamin1, Gujer Cornelia1, Leemann Christine1, Fischer Marek1, Stiegler Gabriela2, Katinger Hermann2, Olson William C.3, Weber Rainer1, Aceto Leonardo1, Günthard Huldrych F.1, Trkola Alexandra1
Affiliation:
1. Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich Switzerland 2. Polymun Scientific, Vienna, Austria 3. Progenics Pharmaceuticals, Tarrytown, New York
Abstract
ABSTRACT
We studied the effect of entry inhibitors on 58 virus isolates derived during acute and chronic infection to validate these inhibitors in vitro and to probe whether viruses at early and chronic disease stages exhibit general differences in the interaction with entry receptors. We included members of all types of inhibitors currently identified: (i) agents that block gp120 binding to CD4 (CD4-IgG
2
and monoclonal antibody [MAb] IgG
1
b12), (ii) compounds that block the interaction with CCR5 (the chemokine RANTES/CCL5, the small-molecule inhibitor AD101, and the anti-CCR5 antibody PRO 140), (iii) the fusion inhibitor enfuvirtide (T-20), and (iv) neutralizing antibodies directed against gp120 (MAb 2G12) and gp41 (MAbs 2F5 and 4E10). No differences between viruses from acute and chronic infections in the susceptibility to inhibitors targeting the CD4 binding site, CCR5, or fusion or to MAb 2G12 were apparent, rendering treatment with entry inhibitors feasible across disease stages. The notable exceptions were antibodies 2F5 and 4E10, which were more potent in inhibiting viruses from acute infection (
P
= 0.0088 and 0.0005, respectively), although epitopes of these MAbs were equally well preserved in both groups. Activities of these MAbs correlated significantly with each other, suggesting that common features of the viral envelope modulate their potencies.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference107 articles.
1. Allaway, G. P., K. L. Davis-Bruno, G. A. Beaudry, E. B. Garcia, E. L. Wong, A. M. Ryder, K. W. Hasel, M. C. Gauduin, R. A. Koup, J. S. McDougal, et al. 1995. Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res. Hum. Retroviruses11:533-539. 2. Arenzana-Seisdedos, F., J. L. Virelizier, D. Rousset, I. Clark-Lewis, P. Loetscher, B. Moser, and M. Baggiolini. 1996. HIV blocked by chemokine antagonist. Nature383:400. (Letter.) 3. Ashkenazi, A., D. H. Smith, S. A. Marsters, L. Riddle, T. J. Gregory, D. D. Ho, and D. J. Capon. 1991. Resistance of primary isolates of human immunodeficiency virus type 1 to soluble CD4 is independent of CD4-rgp120 binding affinity. Proc. Natl. Acad. Sci. USA88:7056-7060. (Erratum, 89:1517.) 4. Baba, T. W., V. Liska, R. Hofmann-Lehmann, J. Vlasak, W. Xu, S. Ayehunie, L. A. Cavacini, M. R. Posner, H. Katinger, G. Stiegler, B. J. Bernacky, T. A. Rizvi, R. Schmidt, L. R. Hill, M. E. Keeling, Y. Lu, J. E. Wright, T. C. Chou, and R. M. Ruprecht. 2000. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med.6:200-206. 5. Barbas, C. F., III, E. Bjorling, F. Chiodi, N. Dunlop, D. Cababa, T. M. Jones, S. L. Zebedee, M. A. Persson, P. L. Nara, E. Norrby, et al. 1992. Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro. Proc. Natl. Acad. Sci. USA89:9339-9343.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|