Affiliation:
1. HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702-1201
Abstract
ABSTRACT
Retrovirus particles contain two copies of their genomic RNA, held together in a dimer by linkages which presumably consist of a limited number of base pairs. In an effort to localize these linkages, we digested deproteinized RNA from Moloney murine leukemia virus (MLV) particles with RNase H in the presence of oligodeoxynucleotides complementary to specific sites in viral RNA. The cleaved RNAs were then characterized by nondenaturing gel electrophoresis. We found that fragments composed of nucleotides 1 to 754 were dimeric, with a linkage as thermostable as that between dimers of intact genomic RNA. In contrast, there was no stable linkage between fragments consisting of nucleotides 755 to 8332. Thus, the most stable linkage between monomers is on the 5′ side of nucleotide 754. This conclusion is in agreement with earlier electron microscopic analyses of partially denatured viral RNAs and with our study (C. S. Hibbert, J. Mirro, and A. Rein, J. Virol. 78:10927-10938, 2004) of encapsidated nonviral mRNAs containing inserts of viral sequence. We obtained similar results with RNAs from immature MLV particles, in which the dimeric linkage is different from that in mature particles and has not previously been localized. The 5′ and 3′ fragments of cleaved RNA are all held together by thermolabile linkages, indicating the presence of tethering interactions between bases 5′ and bases 3′ of the cleavage site. When RNAs from mature particles were cleaved at nucleotide 1201, we detected tethering interactions spanning the cleavage site which are intramonomeric and are as strong as the most stable linkage between the monomers.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献