Characterization of the Kaposi's Sarcoma-Associated Herpesvirus K1 Signalosome

Author:

Lee Bok-Soo1,Lee Sun-Hwa2,Feng Pinghui2,Chang Heesoon2,Cho Nam-Hyuk3,Jung Jae U.1

Affiliation:

1. Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan City, Chonbuk

2. Department of Microbiology and Molecular Genetics and Division of Tumor Virology, New England Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, Massachusetts 01772

3. Department of Microbiology and Immunology, Seoul National University School of Medicine, Seoul, Korea

Abstract

ABSTRACT Kaposi's sarcoma (KS) is a multifocal angiogenic tumor and appears to be a hyperplastic disorder caused, in part, by local production of inflammatory cytokines. The K1 lymphocyte receptor-like protein of KS-associated herpesvirus (KSHV) efficiently transduces extracellular signals to elicit cellular activation events through its cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM). To further delineate K1-mediated signal transduction, we purified K1 signaling complexes and identified its cellular components. Upon stimulation, the K1 ITAM was efficiently tyrosine phosphorylated and subsequently interacted with cellular Src homology 2 (SH2)-containing signaling proteins Lyn, Syk, p85, PLCγ2, RasGAP, Vav, SH2 domain-containing protein tyrosine phosphatase 1/2, and Grab2 through its phosphorylated tyrosine residues. Mutational analysis demonstrated that each tyrosine residue of K1 ITAM contributed to the interactions with cellular signaling proteins in distinctive ways. Consequently, these interactions led to the marked augmentation of cellular signal transduction activity, evidenced by the increase of cellular tyrosine phosphorylation and intracellular calcium mobilization, the activation of NF-AT and AP-1 transcription factor activities, and the production of inflammatory cytokines. These results demonstrate that KSHV K1 effectively recruits a set of cellular SH2-containing signaling molecules to form the K1 signalosome, which elicits downstream signal transduction and induces inflammatory cytokine production.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3