Macropinocytosis Is the Entry Mechanism of Amphotropic Murine Leukemia Virus

Author:

Rasmussen Izabela,Vilhardt Frederik

Abstract

ABSTRACTThe entry mechanism of murine amphotropic retrovirus (A-MLV) has not been unambiguously determined. We show here that A-MLV is internalized not by caveolae or other pinocytic mechanisms but by macropinocytosis. Thus, A-MLV infection of mouse embryonic fibroblasts deficient for caveolin or dynamin, and NIH 3T3 cells knocked down for caveolin expression, was unaffected. Conversely, A-MLV infection of NIH 3T3 and HeLa cells was sensitive to amiloride analogues and actin-depolymerizing drugs that interfere with macropinocytosis. Further manipulation of the actin cytoskeleton through conditional expression of dominant positive or negative mutants of Rac1, PAK1, and RhoG, to increase or decrease macropinocytosis, similarly correlated with an augmented or inhibited infection with A-MLV, respectively. The same experimental perturbations affected the infection of viruses that use clathrin-coated-pit endocytosis or other pathways for entry only mildly or not at all. These data agree with immunofluorescence studies and cryo-immunogold labeling for electron microscopy, which demonstrate the presence of A-MLV in protrusion-rich areas of the cell surface and in cortical fluid phase (dextran)-filled macropinosomes, which also account for up to a half of the cellular uptake of the cell surface-binding lectin concanavalin A. We conclude that A-MLV use macropinocytosis as the predominant entry portal into cells.IMPORTANCEBinding and entry of virus particles into mammalian cells are the first steps of infection. Understanding how pathogens and toxins exploit or divert endocytosis pathways has advanced our understanding of membrane trafficking pathways, which benefits development of new therapeutic schemes and methods of drug delivery. We show here that amphotropic murine leukemia virus (A-MLV) pseudotyped with the amphotropic envelope protein (which expands the host range to many mammalian cells) gains entry into host cells by macropinocytosis. Macropinosomes form as large, fluid-filled vacuoles (up to 10 μm) following the collapse of cell surface protrusions and membrane scission. We used drugs or the introduction of mutant proteins that affect the actin cytoskeleton and cell surface dynamics to show that macropinocytosis and A-MLV infection are correlated, and we provide both light- and electron-microscopic evidence to show the localization of A-MLV in macropinosomes. Finally, we specifically exclude some other potential entry portals, including caveolae, previously suggested to internalize A-MLV.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3