Comparison In Vitro of a High- and a Low-Abundance Chemoreceptor of Escherichia coli : Similar Kinase Activation but Different Methyl-Accepting Activities

Author:

Barnakov Alexander N.1,Barnakova Ludmila A.1,Hazelbauer Gerald L.1

Affiliation:

1. Department of Biochemistry and Biophysics, Washington State University, Pullman, Washington 99164-4660

Abstract

ABSTRACT In Escherichia coli , high-abundance chemoreceptors are present in cellular amounts approximately 10-fold greater than low-abundance chemoreceptors. Cells containing only low-abundance receptors exhibit abnormally low tumble frequencies and do not migrate effectively in spatial gradients. These defects reflect an inherent activity difference between the two receptor classes. We used in vitro assays to investigate this difference. The low-abundance receptor Trg mediated an ∼100-fold activation of the kinase CheA, only twofold less than activation by the high-abundance receptor Tar. In contrast, Trg was less than 1/20 as active as Tar for in vitro methylation. As observed for high-abundance receptors, kinase activation by Trg varied with the extend of modification at methyl-accepting sites; low methylation corresponded to low kinase activation. Thus, in Trg-only cells, low receptor methylation would result in low kinase activation, correspondingly low content of phospho-CheY, and a decreased dynamic range over which attractant binding could modulate kinase activity. These features could account for the low tumble frequency and inefficient taxis exhibited by Trg-only cells. Thus, the crucial functional difference between the receptor classes is likely to be methyl-accepting activity. We investigated the structural basis for this functional difference by introducing onto the carboxy terminus of Trg a CheR-binding pentapeptide, usually found only at the carboxy termini of high-abundance receptors. This addition enhanced the in vitro methyl-accepting activity of Trg 10-fold.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3