Molecular Genetic Analysis of Phosphite and Hypophosphite Oxidation by Pseudomonas stutzeri WM88

Author:

Metcalf William W.1,Wolfe Ralph S.1

Affiliation:

1. Department of Microbiology, University of Illinois, Urbana, Illinois 61801

Abstract

ABSTRACT The first molecular and genetic characterization of a biochemical pathway for oxidation of the reduced phosphorus (P) compounds phosphite and hypophosphite is reported. The pathway was identified in Pseudomonas stutzeri WM88, which was chosen for detailed studies from a group of organisms isolated based on their ability to oxidize hypophosphite (+1 valence) and phosphite (+3 valence) to phosphate (+5 valence). The genes required for oxidation of both compounds by P. stutzeri WM88 were cloned on a single ca. 30-kbp DNA fragment by screening for expression in Escherichia coli and Pseudomonas aeruginosa . Two lines of evidence suggest that hypophosphite is oxidized to phosphate via a phosphite intermediate. First, plasmid subclones that conferred oxidation of phosphite, but not hypophosphite, upon heterologous hosts were readily obtained. All plasmid subclones that failed to confer phosphite oxidation also failed to confer hypophosphite oxidation. No subclones that conferred only hypophosphite expression were obtained. Second, various deletion derivatives of the cloned genes were made in vitro and recombined onto the chromosome of P. stutzeri WM88. Two phenotypes were displayed by individual mutants. Mutants with the region encoding phosphite oxidation deleted (based upon the subcloning results) lost the ability to oxidize either phosphite or hypophosphite. Mutants with the region encoding hypophosphite oxidation deleted lost only the ability to oxidize hypophosphite. The phenotypes displayed by these mutants also demonstrate that the cloned genes are responsible for the P oxidation phenotypes displayed by the original P. stutzeri WM88 isolate. The DNA sequences of the minimal regions implicated in oxidation of each compound were determined. The region required for oxidation of phosphite to phosphate putatively encodes a binding-protein-dependent phosphite transporter, an NAD + -dependent phosphite dehydrogenase, and a transcriptional activator of the lysR family. The region required for oxidation of hypophosphite to phosphite putatively encodes a binding-protein-dependent hypophosphite transporter and an α-ketoglutarate-dependent hypophosphite dioxygenase. The finding of genes dedicated to oxidation of reduced P compounds provides further evidence that a redox cycle for P may be important in the metabolism of this essential, and often growth-limiting, nutrient.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference40 articles.

1. Transition of phosphite to phosphate in soils;Adams F.;Soil Sci.,1953

2. The integrase family of site-specific recombinases: regional similarities and global diversity.

3. Ausubel F. M. Brent R. Kingston R. E. Moore D. D. Seidman J. G. Smith J. A. Struhl K. Current protocols in molecular biology 1 and 2 1992 John Wiley & Sons New York N.Y

4. 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov;Bennasar A.;Int. J. Syst. Bacteriol.,1996

5. Superpolylinkers in cloning and expression vectors;Brosius J.;DNA,1989

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3