Spontaneous Phthiocerol Dimycocerosate-Deficient Variants of Mycobacterium tuberculosis Are Susceptible to Gamma Interferon-Mediated Immunity

Author:

Kirksey Meghan A.,Tischler Anna D.,Siméone Roxane,Hisert Katherine B.,Uplekar Swapna,Guilhot Christophe,McKinney John D.

Abstract

ABSTRACTOnset of the adaptive immune response in mice infected withMycobacterium tuberculosisis accompanied by slowing of bacterial replication and establishment of a chronic infection. Stabilization of bacterial numbers during the chronic phase of infection is dependent on the activity of the gamma interferon (IFN-γ)-inducible nitric oxide synthase (NOS2). Previously, we described a differential signature-tagged mutagenesis screen designed to identifyM. tuberculosis“counterimmune” mechanisms and reported the isolation of three mutants in the H37Rv strain background containing transposon insertions in therv0072,rv0405, andrv2958cgenes. These mutants were impaired for replication and virulence in NOS2−/−mice but were growth-proficient and virulent in IFN-γ−/−mice, suggesting that the disrupted genes were required for bacterial resistance to an IFN-γ-dependent immune mechanism other than NOS2. Here, we report that the attenuation of these strains is attributable to an underlying transposon-independent deficiency in biosynthesis of phthiocerol dimycocerosate (PDIM), a cell wall lipid that is required for full virulence in mice. We performed whole-genome resequencing of a PDIM-deficient clone and identified a spontaneous point mutation in the putative polyketide synthase PpsD that results in a G44C amino acid substitution. We demonstrate by complementation with the wild-typeppsDgene and reversion of theppsDgene to the wild-type sequence that theppsD(G44C) point mutation is responsible for PDIM deficiency, virulence attenuation in NOS2−/−and wild-type C57BL/6 mice, and a growth advantagein vitroin liquid culture. We conclude that PDIM biosynthesis is required forM. tuberculosisresistance to an IFN-γ-mediated immune response that is independent of NOS2.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3