Affiliation:
1. Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, USA
2. Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
3. Roche Pharmaceuticals, Nutley, New Jersey, USA
Abstract
ABSTRACT
Herpes simplex virus 1 (HSV-1), a ubiquitous human pathogen, expresses several viral microRNAs (miRNAs). These, along with the latency-associated transcript, represent the only viral RNAs detectable in latently infected neuronal cells. Here, for the first time, we analyze which HSV-1 miRNAs are loaded into the RNA-induced silencing complex (RISC), the key effector of miRNA function. Only 9 of the 17 reported HSV-1 miRNAs, i.e., miR-H1 to miR-H8 plus miR-H11, were found to actually load into the RISC. Surprisingly, this analysis also revealed that HSV-1 miRNAs loaded into the RISC with efficiencies that differed widely; <1% of the miR-H1-3p miRNA detectable in HSV-1-infected cells was loaded into the RISC. Analysis of HSV-1 mutants individually lacking the viral miR-H2, miR-H3, or miR-H4 miRNA revealed that loss of these miRNAs affected the rate of replication of HSV-1 in neuronal cells but not in fibroblasts. Analysis of mRNA and protein expression, as well as assays mapping viral miRNA binding sites in infected cells, showed that endogenous HSV-1 miR-H2 binds to viral ICP0 mRNA and inhibits its expression, while endogenous miR-H4 inhibits the expression of the viral ICP34.5 gene. In contrast, no viral mRNA target for miR-H3 could be detected, even though miR-H3, like miR-H4, is perfectly complementary to ICP34.5 mRNA. Together, these data demonstrate that endogenous HSV-1 miRNA expression can significantly alter viral replication in culture, and they also identify two viral mRNA targets for miR-H2 and miR-H4 that can partially explain this phenotype.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
88 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献