Processing of the Semliki Forest virus structural polyprotein: role of the capsid protease

Author:

Melancon P,Garoff H

Abstract

The protease activities responsible for the cotranslational processing of the Semliki Forest virus structural polyprotein were investigated by using an in vitro transcription-translation system. Three cleavages released the individual chains from the nascent polyprotein in the order capsid, p62, 6K (a nonstructural peptide), and E1. We showed directly that the protease activity responsible for the release of the capsid protein resides in the capsid itself: by progressive truncation of the cDNA used for the SP6 transcription, we showed that a precursor containing as few as 38 residues of the p62 protein left at the C terminus of the capsid was still very efficiently cleaved in vitro. We further tested the possibility that serine-219 of the capsid is involved in autoproteolysis by site-directed in vitro mutagenesis. A change in the sequence Gly-Asp-Ser(219)-Gly, a tetrapeptide conserved among several animal serine proteases, to Gly-Asp-Arg-Ser-Thr was shown to completely abolish in vitro cleavage. This supports the notion that the capsid is a serine protease. The role of the capsid protease in the processing of the 6K junctions was then investigated by translations of a hybrid polyprotein in which the capsid and most of the p62 sequences are replaced by those of the secretory protein lysozyme. The cleavages and concomitant appearance of the 6K peptide occurred efficiently and were shown to require the presence of membranes. This demonstrates that the capsid protease is not required for those cleavages and suggests that a membrane-associated host protease is responsible for the cleavage.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3