Saliva-mediated aggregation of Enterococcus faecalis transformed with a Streptococcus sanguis gene encoding the SSP-5 surface antigen

Author:

Demuth D R1,Berthold P1,Leboy P S1,Golub E E1,Davis C A1,Malamud D1

Affiliation:

1. Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104.

Abstract

The interaction of a high-molecular-weight salivary glycoprotein (agglutinin) with Streptococcus sanguis M5 leads to the formation of bacterial aggregates. We have previously shown that the SSP-5 surface antigen from S. sanguis M5 binds the salivary agglutinin and therefore may be involved in the aggregation process. Here we report the transformation of a nonaggregating Enterococcus faecalis strain with the SSP-5 gene and show that the protein is expressed on the cell surface and confers an aggregation-positive phenotype. E. faecalis S161 protoplasts were transformed with pAM401 EB-5, a shuttle vector containing the S. sanguis SSP-5 gene, resulting in the isolation of E. faecalis S161EB-5. Crude cell extracts from this transformant and from S. sanguis M5 were analyzed by Western blotting. Extracts from S. sanguis M5 possessed peptides of 190 and 205 kilodaltons that reacted strongly with polyclonal antibodies against the recombinant SSP-5 antigen. E. faecalis S161EB-5 contained only the 190-kilodalton immunoreactive protein, suggesting that the antigen may be processed differently in E. faecalis S161EB-5. The parent strain, E. faecalis S161, did not react with this antibody preparation. Immunogold labeling of intact E. faecalis S161EB-5 and S. sanguis M5 with anti-SSP-5 immunoglobulin G showed that both organisms expressed similar levels of the antigen. Both organisms formed visible aggregates upon incubation with salivary agglutinin. These results suggest that the SSP-5 antigen may mediate both the binding of agglutinin to S. sanguis M5 and the subsequent formation of bacterial aggregates.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3