Kisameet Clay Exhibits Potent Antibacterial Activity against the ESKAPE Pathogens

Author:

Behroozian Shekooh1,Svensson Sarah L.1,Davies Julian1

Affiliation:

1. Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada

Abstract

ABSTRACT The ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species) pathogens cause an increasing number of nosocomial infections worldwide since they escape the inhibitory effect of the available antibiotics and the immune response. Here, we report the broad-spectrum and potent antibacterial activity of Kisameet clay, a natural clay mineral from British Columbia, Canada, against a group of multidrug-resistant ESKAPE strains. The results suggest that this natural clay might be developed as a therapeutic option for the treatment of serious infections caused by these important pathogens. IMPORTANCE More than 50 years of misuse and overuse of antibiotics has led to a plague of antibiotic resistance that threatens to reduce the efficacy of antimicrobial agents available for the treatment of infections due to resistant organisms. The main threat is nosocomial infections in which certain pathogens, notably the ESKAPE organisms, are essentially untreatable and contribute to increasing mortality and morbidity in surgical wards. The pipeline of novel antimicrobials in the pharmaceutical industry is essentially empty. Thus, there is a great need to seek for new sources for the treatment of recalcitrant infectious diseases. We describe experiments that demonstrate the efficacy of a “natural” medicine, Kisameet clay, against all of the ESKAPE strains. We suggest that this material is worthy of clinical investigation for the treatment of infections due to multidrug-resistant organisms.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Reference17 articles.

1. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE

2. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America

3. Brigatti MF, Galán E, Theng BKG. 2006. Structure and mineralogy of clay minerals, p 21–81. In Bergaya F, Theng BKG, Lagaly G (ed), Handbook of clay science. Developments in clay science, vol 1. Elsevier Ltd, Amsterdam, Netherlands.

4. Clay minerals and their beneficial effects upon human health. A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3