Furin Cleavage Potentiates the Membrane Fusion-Controlling Intersubunit Disulfide Bond Isomerization Activity of Leukemia Virus Env

Author:

Sjöberg Mathilda1,Wallin Michael1,Lindqvist Birgitta1,Garoff Henrik1

Affiliation:

1. Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden

Abstract

ABSTRACT The membrane fusion protein of murine leukemia virus is a trimer of a disulfide-linked peripheral-transmembrane (SU-TM) subunit complex. The intersubunit disulfide bond is in SU linked to a disulfide bond isomerization motif, CXXC, with which the virus controls its fusion reaction (M. Wallin, M. Ekström, and H. Garoff, EMBO J. 23:54-65, 2004). Upon receptor binding the isomerase rearranges the intersubunit disulfide bond into a disulfide bond isomer within the motif. This facilitates SU dissociation and fusion activation in the TM subunit. In the present study we have asked whether furin cleavage of the Env precursor potentiates the isomerase to be triggered. To this end we accumulated the late form of the precursor, gp90, in the cell by incubation in the presence of a furin-inhibiting peptide. The isomerization was done by NP-40 incubation or by a heat pulse under alkylation-free conditions. The cells were lysed in the presence of alkylator, and the precursor was immunoprecipitated, gel isolated, deglycosylated, and subjected to complete trypsin digestion. Disulfide-linked peptide complexes were separated by sodium dodecyl sulfate-tricine-polyacrylamide gel electrophoresis under nonreducing conditions. This assay revealed the size of the characteristic major disulfide-linked peptide complex that differentiates the two isomers of the disulfide bond between Cys336 (or Cys339) and Cys563, i.e., the bond corresponding to the intersubunit disulfide bond. The analyses showed that the isomerase was five- to eightfold more resistant to triggering in the precursor than in the mature, cleaved form. This suggests that the isomerase becomes potentiated for triggering by a structural change in Env that is induced by furin cleavage in the cell.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3