New Insights into the Evolutionary Rate of Hepatitis B Virus at Different Biological Scales

Author:

Lin You-Yu1,Liu Chieh2,Chien Wei-Hung3,Wu Li-Ling3,Tao Yong4,Wu Dafei4,Lu Xuemei4,Hsieh Chia-Hung5,Chen Pei-Jer3,Wang Hurng-Yi367,Kao Jia-Horng3,Chen Ding-Shinn38

Affiliation:

1. Department of Life Science, National Taiwan University, Taipei, Taiwan

2. Department of Microbiology, National Taiwan University, Taipei, Taiwan

3. Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan

4. Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China

5. Department of Forestry and Nature Conservation, Chinese Culture University, Taipei, Taiwan

6. Institute of Ecology and Evolution, National Taiwan University, Taipei, Taiwan

7. Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan

8. Genomics Research Center, Academia Sinica, Taipei, Taiwan

Abstract

ABSTRACT The evolutionary rates of hepatitis B virus (HBV) estimated using contemporary sequences are 10 2 to 10 4 times higher than those derived from archaeological and genetic evidence. This discrepancy makes the origin of HBV and the time scale of its spread, both of which are critical for studying the burden of HBV pathogenicity, largely unresolved. To evaluate whether the dual demands (i.e., adaptation within hosts and colonization between hosts) of the viral life cycle affect this conundrum, the HBV quasispecies dynamics within and among hosts from a family consisting of a grandmother, her 5 children, and her 2 granddaughters, all of whom presumably acquired chronic HBV through mother-to-infant transmission, were examined by PCR cloning and next-generation sequencing methods. We found that the evolutionary rate of HBV between hosts was considerably lower than that within hosts. Moreover, the between-host substitution rates of HBV decreased as transmission numbers between individuals increased. Both observations were due primarily to changes at nonsynonymous rather than synonymous sites. There were significantly more multiple substitutions than expected for random mutation processes, and 97% of substitutions were changed from common to rare amino acid residues in the database. Continual switching between colonization and adaptation resulted in a rapid accumulation of mutations at a limited number of positions, which quickly became saturated, whereas substitutions at the remaining regions occurred at a much lower rate. Our study may help to explain the time-dependent HBV substitution rates reported in the literature and provide new insights into the origin of the virus. IMPORTANCE It is known that the estimated hepatitis B virus (HBV) substitution rate is time dependent, but the reason behind this observation is still elusive. We hypothesize that owing to the small genome size of HBV, transmission between hosts and adaptation within hosts must exhibit high levels of fitness trade-offs for the virus. By studying the HBV quasispecies dynamics for a chain of sequentially infected transmissions within a family, we found the HBV substitution rate between patients to be negatively correlated with the number of transmissions. Continual switching between hosts resulted in a rapid accumulation of mutations at a limited number of genomic sites, which quickly became saturated in the short term. Nevertheless, substitutions at the remaining regions occurred at a much lower rate. Therefore, the HBV substitution rate decreased as the divergence time increased.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3