Mutations on the N-Terminal Edge of the DELSEED Loop in either the α or β Subunit of the Mitochondrial F 1 -ATPase Enhance ATP Hydrolysis in the Absence of the Central γ Rotor

Author:

La Thuy,Clark-Walker George Desmond,Wang Xiaowen,Wilkens Stephan,Chen Xin Jie

Abstract

ABSTRACT F 1 -ATPase is a rotary molecular machine with a subunit stoichiometry of α 3 β 3 γ 1 δ 1 ε 1 . It has a robust ATP-hydrolyzing activity due to effective cooperativity between the three catalytic sites. It is believed that the central γ rotor dictates the sequential conformational changes to the catalytic sites in the α 3 β 3 core to achieve cooperativity. However, recent studies of the thermophilic Bacillus PS3 F 1 -ATPase have suggested that the α 3 β 3 core can intrinsically undergo unidirectional cooperative catalysis (T. Uchihashi et al., Science 333:755-758, 2011). The mechanism of this γ-independent ATP-hydrolyzing mode is unclear. Here, a unique genetic screen allowed us to identify specific mutations in the α and β subunits that stimulate ATP hydrolysis by the mitochondrial F 1 -ATPase in the absence of γ. We found that the F446I mutation in the α subunit and G419D mutation in the β subunit suppress cell death by the loss of mitochondrial DNA (ρ o ) in a Kluyveromyces lactis mutant lacking γ. In organello ATPase assays showed that the mutant but not the wild-type γ-less F 1 complexes retained 21.7 to 44.6% of the native F 1 -ATPase activity. The γ-less F 1 subcomplex was assembled but was structurally and functionally labile in vitro . Phe446 in the α subunit and Gly419 in the β subunit are located on the N-terminal edge of the DELSEED loops in both subunits. Mutations in these two sites likely enhance the transmission of catalytically required conformational changes to an adjacent α or β subunit, thereby allowing robust ATP hydrolysis and cell survival under ρ o conditions. This work may help our understanding of the structural elements required for ATP hydrolysis by the α 3 β 3 subcomplex.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

Reference55 articles.

1. Action de l'acriflavine sur les levures. II. Etude génétique du mutant “petite colonie”;Ephrussi;Ann. Inst. Pasteur (Paris),1949

2. Lethality of the petite mutation in petite negative yeasts;Bulder;Antonie Van Leeuwenhoek,1964

3. Induction of petite mutation and inhibition of synthesis of respiratory enzymes in various yeasts;Bulder;Antonie Van Leeuwenhoek,1964

4. Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetition of genes;Faye;Biochimie,1973

5. The petite mutation in yeasts: 50 years on;Chen;Int. Rev. Cytol.,2000

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3