Affiliation:
1. Department of Biochemistry, Albert Einstein Medical Center Northern Division, Philadelphia, Pennsylvania 19141
Abstract
The formation and composition of a cell wall rhamnose-containing polysaccharide by membrane fragments from
Streptococcus pyogenes
and its stabilized L-form were compared. Also, the effect of prior treatment on the ability of coccal whole-cell and membrane fragments to incorporate radioactivity from thymidine diphosphate-
14
C-rhamnose, and the results of subsequent attempts to remove labeled polysaccharide from such membranes are given. L-form membrane fragments were capable of only 10% uptake of
14
C-rhamnose from this nucleotide as compared with streptococcal membranes. However, once bound, both membrane fragments polymerized rhamnose to the same extent. These findings tend to negate the almost complete lack of polymeric rhamnose within the intact L-form as being due to the absence of membrane enzymes necessary for the transfer of rhamnose from a suitable precursor to membrane acceptor sites or enzymes responsible for rhamnose polymerization. Degradation of labeled rhamnose polysaccharide after isolation from coccal membranes by mild acid hydrolysis showed muramic acid and glucosamine to be attached. This same polysaccharide from L-form membrane fragments was devoid of amino sugars. These data suggest the possible involvement of amino sugars in the attachment of cell wall polymeric rhamnose to the streptococcal cytoplasmic membrane. The absence of attached amino sugars to rhamnose polysaccharide from L-form membrane fragments is discussed in terms of this organism's continued inability for new cell wall formation. The isolation, from streptococcal membrane fragments, of a polysaccharide containing rhamnose and amino sugars common to at least two different streptococcal cell wall-type polymers was demonstrated.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献