Natural Transformation of Acinetobacter calcoaceticus by Plasmid DNA Adsorbed on Sand and Groundwater Aquifer Material

Author:

Chamier Bärbel1,Lorenz Michael G.1,Wackernagel Wilfried1

Affiliation:

1. Genetik, Fachbereich Biologie, Universität Oldenburg, D-2900 Oldenburg, Germany

Abstract

It is known that plasmid DNA and linear duplex DNA molecules adsorb to chemically purified mineral grains of sand and to particles of several clay fractions. It seemed desirable to examine whether plasmid DNA would also adsorb to nonpurified mineral materials taken from the environment and, particularly, whether adsorbed plasmid DNA would be available for natural transformation of bacteria. Therefore, microcosms consisting of chemically pure sea sand plus buffered CaCl 2 solution were compared with microcosms consisting of material sampled directly from a groundwater aquifer (GWA) plus groundwater (GW) with respect to the natural transformation of Acinetobacter calcoaceticus by mineral-associated DNA. The GWA minerals were mostly sand with inorganic precipitates and organic material plus minor quantities of silt and clay (illite and kaolinite). The amount of plasmid DNA which adsorbed to GWA (in GW) was about 80% of the amount which adsorbed to purified sand (in buffered CaCl 2 solution). Plasmid DNA adsorbed on sand transformed A. calcoaceticus significantly less efficiently than did plasmid DNA in solution. In contrast, the transformation by sand-adsorbed chromosomal DNA was as high as that by DNA in solution. In GWA/GW microcosms, the efficiency of transformation by chromosomal DNA was similar to that in sand microcosms, whereas plasmid transformation was not detectable. However, plasmid transformants were found at a low frequency when GWA was loaded with both chromosomal and plasmid DNA. Reasons for the low transformation efficiency of plasmid DNA adsorbed to mineral surfaces are discussed. Control experiments showed that the amounts of plasmid and chromosomal DNA desorbing from sand during incubation with a cell-free filtrate of a competent cell suspension did not greatly contribute to transformation in sand microcosms, suggesting that transformation occurred by direct uptake of DNA from the mineral surfaces. Taken together, the observations suggest that plasmid DNA and chromosomal DNA fragments which are adsorbed on mineral surfaces in a sedimentary or soil habitat may be available (although with different efficiencies for the two DNA species) for transformation of a naturally competent gram-negative soil bacterium.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3