Bacterial lipopolysaccharide potentiates gamma interferon-induced cytotoxicity for normal mouse and rat fibroblasts

Author:

Dijkmans R1,Van Damme J1,Cornette F1,Heremans H1,Billiau A1

Affiliation:

1. Rega Institute, Leuven, Belgium.

Abstract

Gamma interferon (IFN-gamma) can be cytolytic for normal mouse fibroblasts isolated from embryonic or adult tissue (R. Dijkmas, B. Decock, H. Heremans, J. Van Damme, and A. Billiau, Lymphokine Res. 8:25-34, 1989). This cytotoxicity has been shown to be transcription and translation dependent, thereby suggesting involvement of a suicidelike mechanism. The dose of IFN-gamma required for cytotoxicity is higher than that needed for antiviral and macrophage activation but can be reduced 10- to 100-fold by cotreatment of the cells with tumor necrosis factor or interleukin-1 (IL-1) or both, two cytokines that by themselves are not toxic for these cells. Here, we show that bacterial lipopolysaccharide (LPS), which alone has no effect on the viability of mouse fibroblasts, stimulates cell suicide induced by IFN-gamma. The effect was observed in cultures that were virtually free of nonfibroblastoid cells. LPS showed its toxicity-enhancing effect only if applied on the cells simultaneously with or immediately after treatment with IFN-gamma. Pretreatment of the cells with LPS was ineffective. Inclusion of antibodies directed against tumor necrosis factor alpha or IL-1 alpha in the culture medium did not block the cytotoxic effect of combined IFN-gamma plus LPS treatment. The time courses of cell toxicity appearance in fibroblasts treated with combined IFN-gamma plus LPS or IFN-gamma plus IL-1 were similar. In addition to LPS, heat-killed gram-negative (Escherichia coli) but also gram-positive (Staphylococcus aureus, Listeria monocytogenes) bacteria were found to enhance IFN-gamma-induced cell death. These findings suggest that IFN-gamma formed in vivo during infectious processes directly aggravates tissue destruction.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference17 articles.

1. Capacity of tumor necrosis factor to bind and penetrate membranes is pH-dependent;Baldwin R. L.;J. Immunol.,1988

2. Gamma interferon-mediated cytotoxicity related to murine Chlamydia trachomatis infection;Byrne G. I.;Infect. Immun.,1988

3. Interferon-y: a master key in the immune system;Dijkmans R.;Curr. Opinion Immunol.,1988

4. Interferon--y is cytotoxic for normal mouse fibroblasts: enhancement by tumor necrosis factor and interleukin 1;Di B.;Lymphokine Res.,1989

5. Heterogeneity of Chinese hamster ovary cell-produced recombinant murine interferon-y;Dikmans R.;J. Biol. Chem.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3