Mutation-Driven β-Lactam Resistance Mechanisms among Contemporary Ceftazidime-Nonsusceptible Pseudomonas aeruginosa Isolates from U.S. Hospitals

Author:

Castanheira Mariana,Mills Janet C.,Farrell David J.,Jones Ronald N.

Abstract

ABSTRACTOprD loss and hyperexpression of AmpC, MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM were evaluated among 120Pseudomonas aeruginosaisolates collected during 2012 in U.S. hospitals and selected based on ceftazidime MIC values (1 to >32 μg/ml). AmpC derepression (10-fold greater than that with the control) and OprD loss (decreased/no band) were the most prevalent resistance mechanisms: 47.5 and 45.8% of the isolates were considered positive, respectively. Elevated expression of the efflux pumps MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY-OprM was observed in 32.5, 8.3, 0.0, and 28.4% of the isolates, respectively. A total of 21 different combinations of resistance mechanisms were noted, and the most prevalent included AmpC derepression with OprD loss with and without efflux hyperexpression (38 and 10 isolates, respectively). A total of 26 isolates had no changes in the resistance mechanisms tested and had lower MIC values for all β-lactams or β-lactam/β-lactamase inhibitor combinations analyzed. OprD loss had a strong correlation with elevated MIC results for imipenem and meropenem (median MIC values of 8 and 4 μg/ml, respectively), with all combinations displaying OprD loss also displaying elevated median MIC values for these carbapenems (4 to >8 μg/ml). AmpC expression levels were greater in isolates displaying elevated cefepime, ceftazidime, or piperacillin-tazobactam MIC values (≥4, ≥4, and ≥16 μg/ml, respectively). Isolates displaying derepressed AmpC had ceftolozane-tazobactam MIC values ranging from 1 to 16 μg/ml. No strong correlation was noticed with MIC values for this β-lactam/β-lactamase inhibitor combination and OprD loss or hyperexpression of efflux systems. Two KPC-producing isolates were detected among 16 isolates displaying ceftolozane-tazobactam MIC values of ≥8 μg/ml.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3