Affiliation:
1. Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
Abstract
ABSTRACT
Nine field strains of fowlpox virus (FPV) isolated during a 24-year span from geographically diverse outbreaks of fowlpox in the United States were screened for the presence of reticuloendotheliosis virus (REV) sequences in their genomes by PCR. Each isolate appeared to be heterogeneous in that either a nearly intact provirus or just a 248- or 508-nucleotide fusion of portions of the integrated REV 5′ and 3′ long terminal repeats (LTRs) was exclusively present at the same genomic site. In contrast, four fowlpox vaccines of FPV origin and three originating from pigeonpox virus were genetically homogeneous in having retained only the 248-bp LTR fusion, whereas two other FPV-based vaccines had only the larger one. These remnants of integrated REV presumably arose during homologous recombination at one of the two regions common to both LTRs or during retroviral excision from the FPV genome. Loss of the provirus appeared to be a natural event because the tripartite population could be detected in a field sample (tracheal lesion). Moreover, the provirus was also readily deleted during propagation of FPV in cultured cells, as evidenced by the detection of truncated LTRs after one passage of a plaque-purified FPV recombinant having a “genetically marked” provirus. However, the deletion mutants did not appear to have a substantial replicative advantage in vitro because even after 55 serial passages the original recombinant FPV was still prevalent. As to the in vivo environment, retention of the REV provirus may confer some benefit to FPV for infection of poultry previously vaccinated against fowlpox.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
79 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献