Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding

Author:

Zheng Z1,Maidji E1,Tugizov S1,Pereira L1

Affiliation:

1. Department of Stomatology, School of Dentistry, University of California, San Francisco 94143-0512, USA.

Abstract

Human cytomegalovirus glycoprotein B (gB) plays a role in the fusion of the virion envelope with the host cell membrane and in syncytium formation in infected cells. Hydrophobic sequences at the carboxyl terminus, amino acids (aa) 714 to 771, anchor gB in the lipid bilayer, but the unusual length of this domain suggests that it may serve another role in gB structure. To explore the function(s) of this region, we deleted aa 717 to 747 (gB deltaI mutation), aa 751 to 771 (gB deltaII mutation), and aa 717 to 772 (gB deltaI-II mutation) and constructed a substitution mutation, Lys-748 to Val (Lys748Val)-Asn749Ala-Pro750Ile (gB KNPm). Mutated forms of gB were expressed in U373 glioblastoma cells and subjected to analysis by flow cytometry, confocal microscopy, and immunoprecipitation. Mutations gB deltaI-II and gB deltaII alone caused secretion of gB into the medium, confirming that aa 751 to 771 function as a membrane anchor. In contrast, mutations gB deltaI and gB KNPm blocked cell surface expression and arrested gB transport in the endoplasmic reticulum (ER). Detailed examination of gB deltaI and gB KNPm with a panel of monoclonal antibodies showed that the mutated forms were indistinguishable from wild-type gB in conformation and formed oligomers; however, they remained sensitive to endoglycosidase H and did not undergo endoproteolytic cleavage. Analysis of protein complexes formed by gB and molecular chaperones in the ER showed that calnexin and calreticulin, lectin-like chaperones, bound equal amounts of uncleaved wild-type gB, gB deltaI, and gB KNPm, but the glucose-regulated proteins 78 (BiP) and 94 formed stable complexes only with the mutated forms, causing their retention in the ER. Our studies show that aa 714 to 750 are key residues in the architecture of gB molecules and that the ER chaperones, which facilitate gB folding and monitor the quality of glycoproteins, detect subtle changes in folding intermediates that are conferred by mutations in this region.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3