Affiliation:
1. Institute for Molecular Virology and Department of Animal Health & Biomedical Sciences, University of Wisconsin--Madison, 53706, USA.
Abstract
The RNA genomes from the cardioviruses, hepatoviruses, and aphthoviruses encode two to five tandem pseudoknots within their 5' untranslated regions. These pseudoknots lie adjacent to a pyrimidine-rich sequence, which in cardio- and aphthoviruses takes the form of a homopolymeric poly(C) tract. Seven deletion mutations within mengovirus pseudoknots PK(B) and PK(C) were created and characterized. tested in tissue culture, mengovirus genomes with alterations in PK(C) were viable but had small plaque phenotypes. Larger plaque revertants were isolated and partially characterized, and each proved to be a second-site pseudorevertant with (unmapped) changes elsewhere in the genome. The infectious PK(C) mutant viruses were highly lethal to mice, and deletions in this motif did not affect mengovirus virulence in the same manner as deletions in the adjacent poly(C) tract. In contrast, deletions in PK(B), or deletions which spanned PK(B) + PK(C), produced nonviable genomes. Cell-free translations directed by any of the altered PK sequences gave normal polyprotein amounts relative to wild-type mengovirus. But viral RNA accumulation during HeLa cell infection was dramatically impaired, even with the least disruptive of the PK(C) changes, suggesting the pseudoknots play an essential though undefined role in RNA synthesis and moreover that an intact PK(B) structure is critical to this function.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献