The a sequence is dispensable for isomerization of the herpes simplex virus type 1 genome

Author:

Martin D W1,Weber P C1

Affiliation:

1. Infectious Diseases Section, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan 48105, USA.

Abstract

The herpes simplex virus type 1 (HSV-1) genome consists of two components, L (long) and S (short), that invert relative to each other during productive infection to generate four equimolar isomeric forms of viral DNA. Recent studies have indicated that this genome isomerization is the result of DNA replication-mediated homologous recombination between the large inverted repeat sequences that exist in the genome, rather than site-specific recombination through the terminal repeat a sequences present at the L-S junctions. However, there has never been an unequivocal demonstration of the dispensability of the latter element for this process using a recombinant virus whose genome lacks a sequences at its L-S junctions. This is because the genetic manipulations required to generate such a viral mutant are not possible using simple marker transfer, since the cleavage and encapsidation signals of the a sequence represent essential cis-acting elements which cannot be deleted outright from the viral DNA. To circumvent this problem, a simple two-step strategy was devised by which essential cis-acting sites like the a sequence can be readily deleted from their natural loci in large viral DNA genomes. This method involved initial duplication of the element at a neutral site in the viral DNA and subsequent deletion of the element from its native site. By using this approach, the a sequence at the L-S junction was rendered dispensable for virus replication through the insertion of a second copy into the thymidine kinase (TK) gene of the viral DNA; the original copies at the L-S junctions were then successfully deleted from this virus by conventional marker transfer. The final recombinant virus, HSV-1::L-S(delta)a, was found to be capable of undergoing normal levels of genome isomerization on the basis of the presence of equimolar concentrations of restriction fragments unique to each of the four isomeric forms of the viral DNA. Interestingly, only two of these genomic isomers could be packaged into virions. This restriction was the result of inversion of the L component during isomerization, which prevented two of the four isomers from having the cleavage and encapsidation signals of the a sequence in the TK gene in a packageable orientation. This phenomenon was exploited as a means of directly measuring the kinetics of HSV-1::L-S(delta)a genome isomerization. Following infection with virions containing just the two packaged genomic isomers, all four isomers were readily detected at a stage in infection coincident with the onset of DNA replication, indicating that the loss of the a sequence at the L-S junction had no adverse effect on the frequency of isomerization events in this virus. These results therefore validate the homologous recombination model of HSV-1 genome isomerization by directly demonstrating that the a sequence at the L-S junction is dispensable for this process. The strategy used to remove the a sequence from the HSV-1 genome in this work should be broadly applicable to studies of essential cis-acting elements in other large viral DNA molecules.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3