Comparative analysis of adenovirus fiber-cell interaction: adenovirus type 2 (Ad2) and Ad9 utilize the same cellular fiber receptor but use different binding strategies for attachment

Author:

Roelvink P W1,Kovesdi I1,Wickham T J1

Affiliation:

1. GenVec, Inc., Rockville, Maryland 20852, USA.

Abstract

We have analyzed the binding of adenovirus (Ad) serotypes from subgroups B, C, and D through fiber-virus and fiber-fiber cross-competition experiments. Since viruses in these distinct subgroups display markedly different tropisms, it was unexpected that the subgroup C viruses Ad2 and 5 and the subgroup D virus Ad9 cross-competed for the same cellular fiber receptor. The subgroup B serotype Ad3 recognized a receptor distinct from the Ad2, 5, and 9 fiber receptor. However, despite sharing the same fiber receptor, Ad2 and Ad9 displayed markedly different binding characteristics that appeared to result from direct Ad9 binding to cells via alpha(v)-integrins. Unlike Ad2, Ad9 binding to many cell lines was not abrogated by competition with the fiber 9 knob (F9K). Ad9 binding to fiber receptor-deficient cells was blocked by a monoclonal antibody to alpha(v)-integrins. In contrast, Ad9 binding to alpha(v)-deficient cells that express fiber receptor was blocked by F9K. Transfection of an alpha(v)-integrin-deficient cell line with a plasmid that expresses alpha(v)beta5 resulted in Ad9 binding that was not significantly blocked by F9K but was blocked with a combination of F9K and penton base. These results imply that the shorter length of fiber 9 (11 nm) relative to fiber 2 (37 nm) permits fiber-independent binding of Ad9 penton base to alpha(v)-integrins. The difference in fiber length may explain the different binding characteristics and tissue tropisms of each virus despite both utilizing the same fiber and penton base receptors.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3