Intracellular expression of RNA transcripts complementary to the human immunodeficiency virus type 1 gag gene inhibits viral replication in human CD4+ lymphocytes

Author:

Veres G1,Escaich S1,Baker J1,Barske C1,Kalfoglou C1,Ilves H1,Kaneshima H1,Böhnlein E1

Affiliation:

1. Progenesys Program, Systemix Inc., Palo Alto, California 94304, USA.

Abstract

Intracellular expression of antisense transcripts was evaluated for its potential to interfere with human immunodeficiency virus type 1 (HIV-1) replication. Retroviral vectors encoding HIV-1 psi-gag complementary sequences downstream of a selectable gene (neo, puromycin gene, or Lyt2 gene) were stable and yielded high titers. Human CEMSS T cells were transduced with amphotropic retroviral vectors to express RNA complementary to the psi-gag sequence of HIV-1. Replication of laboratory-adapted HIV-1 strains was inhibited by more than 1 order of magnitude (log10) in these transduced cells even at high inoculation doses (4 x 10(4) 50% tissue culture infective doses). Antisense-mediated anti-HIV efficacy was further demonstrated by survival of CD4+ cells in these cultures relative to controls. The level of anti-HIV-1 activity of the psi-gag antisense sequence correlated with the length of the antisense transcript. Maximal anti-HIV efficacy was observed with complementary sequence more than 1,000 nucleotides long, whereas transcripts less than 400 nucleotides long failed to inhibit HIV-1 replication. Expression of psi-gag antisense RNA also reduced HIV-1 JR-CSF replication 10-fold in primary CD4+ lymphocytes. These results obtained with a T-cell line and primary peripheral blood lymphocytes indicate the potential of long antisense RNAs as an efficient anti-HIV-1 therapeutic agent for gene therapy.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3