DNA encapsidation by viruslike particles assembled in insect cells from the major capsid protein VP1 of B-lymphotropic papovavirus

Author:

Pawlita M1,Müller M1,Oppenländer M1,Zentgraf H1,Herrmann M1

Affiliation:

1. Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany. M.Pawlita@dkfz-heidelberg.de.

Abstract

Capsids of polyomaviruses--small, nonenveloped DNA viruses--consist of the major structural protein VP1 and the minor structural proteins VP2 and VP3. The contributions of the individual capsid proteins to functions of the viral particle, such as DNA encapsidation, cell receptor attachment, entry, and uncoating, are still not clear. Here we show that viruslike particles assembled in nuclei of insect cells from VP1 of the monkey B-lymphotropic papovavirus (LPV) are sufficient to unspecifically encapsidate DNA. LPV VP1 expressed in large amounts in insect cells by a baculovirus vector assembled spontaneously in the nuclei to form viruslike particles. After metrizamide equilibrium density gradient purification and nuclease digestion, a fraction of these particles was shown to contain VP1-associated linear, double-stranded DNA with a predominant size of 4.5 kb. The fraction of DNA-containing VP1 particles increased with time and dose of baculovirus vector infection. The DNA-containing particles, further purified by sucrose gradient centrifugation, appeared as "full" particles in negative-staining electron microscopy. As shown by DNA hybridization, the encapsidated DNA consisted of insect cell and baculoviral sequences with no apparent strong homology to LPV sequences. Three non-LPV VP1-derived host proteins with apparent molecular masses of approximately 14, 15, and 16 kDa copurified with the DNA-containing particles and may represent insect cell histones encapsidated together with the DNA. A similar species of host DNA was also found in purified LPV wild-type virions. These data suggest that LPV VP1 alone can be sufficient to encapsidate linear DNA in a sequence-independent manner.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3