Expression of an equine herpesvirus 1 ICP22/ICP27 hybrid protein encoded by defective interfering particles associated with persistent infection

Author:

Chen M1,Harty R N1,Zhao Y1,Holden V R1,O'Callaghan D J1

Affiliation:

1. Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932, USA.

Abstract

Defective interfering (DI) particles of equine herpesvirus type 1 (EHV-1) are capable of mediating persistent infection (S. A. Dauenhauer, R. A. Robinson, and D. J. O'Callaghan, J. Gen. Virol. 60:1-14, 1982; R. A. Robinson, R. B. Vance, and D. J. O'Callaghan, J. Virol. 36:204-219, 1980). Sequence analysis of cloned DI particle DNA revealed that portions of two regulatory genes, ICP22 (IR4) and ICP27 (UL3), are linked in frame to form a unique hybrid open reading frame (ORF). This hybrid ORF, designated as the IR4/UL3 gene, encodes the amino-terminal 196 amino acids of the IR4 protein (ICP22 homolog) and the carboxy-terminal 68 amino acids of the UL3 protein (ICP27 homolog). Portions of DNA sequences encoding these two regulatory proteins, separated by more than 115 kbp in the standard virus genome, were linked presumably by a homologous recombination event between two identical 8-bp sequences. Reverse transcriptase-PCR and S1 nuclease analyses revealed that this unique ORF is transcribed by utilizing the transcription initiation site of ICP22 and the polyadenylation signal of ICP27 in DI particle-enriched infection. Immunoprecipitation and Western blot (immunoblot) analyses with antisera to the ICP22 and ICP27 proteins demonstrated that a 31-kDa hybrid protein was synthesized in the DI particle-enriched infection but not in standard virus infection. This 31-kDa hybrid protein was expressed at the same time as the ICP22 protein in DI particle-enriched infection and migrated at the same location on polyacrylamide gel electrophoresis as the protein expressed from a cloned IR4/UL3 expression vector. These observations suggested that the unique IR4/UL3 hybrid gene is expressed from the DI particle genome and may play a role in DI particle-mediated persistent infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3