Differential transactivation of the intercellular adhesion molecule 1 gene promoter by Tax1 and Tax2 of human T-cell leukemia viruses

Author:

Tanaka Y1,Hayashi M1,Takagi S1,Yoshie O1

Affiliation:

1. Shionogi Institute for Medical Science, Osaka, Japan.

Abstract

Previously, we showed that surface expression of intercellular adhesion molecule 1 (ICAM-1) was strongly upregulated in T cells carrying proviral human T-cell leukemia virus type 1 (HTLV-1) and that the viral transactivator protein Tax1 was capable of inducing the ICAM-1 gene. To determine the responsive elements in the human ICAM-1 gene promoter, a reporter construct in which the 5'-flanking 4.4-kb region of the ICAM-1 gene was linked to the promoterless chloramphenicol acetyltransferase (CAT) gene was cotransfected with expression vectors for Tax1 and Tax2, both of which were separately confirmed to be potent transactivators of the HTLV-1 long terminal repeat (LTR). Tax1 strongly activated the ICAM-1 promoter in all the cell lines tested: three T-cell lines (Jurkat, MOLT-4, and CEM), one monocytoid cell line (U937), and HeLa. Unexpectedly, Tax2 activated the ICAM-1 promoter only in HeLa. By deletion and mutation analyses of the 1.3-kb 5'-flanking region, we found that Tax1 transactivated the ICAM-1 promoter mainly via a cyclic AMP-responsive element (CRE)-like site at -630 to -624 in the Jurkat T-cell line and via an NF-kappaB site at -185 to -177 and an SP-1 site at -59 to -54 in HeLa. On the other hand, Tax2 was totally inactive on the ICAM-1 promoter in Jurkat but transactivated the promoter via the NF-kappaB site at -185 to -177 in HeLa. Gel mobility shift assays demonstrated proteins specifically binding to the CRE-like site at -630 to -624 in Tax1-expressing T-cell lines. Stable expression of Tax1 but not Tax2 in Jurkat subclones enhanced the surface expression of ICAM-1. The differential ability of Tax1 and Tax2 in transactivation of the ICAM-1 gene may be related to the differential pathogenicity of HTLV-1 and HTLV-2.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3