Efficient dual transcomplementation of adenovirus E1 and E4 regions from a 293-derived cell line expressing a minimal E4 functional unit

Author:

Yeh P1,Dedieu J F1,Orsini C1,Vigne E1,Denefle P1,Perricaudet M1

Affiliation:

1. Laboratoire des Virus Oncogènes, 1301/Rhône-Poulenc Rorer Gencell, Institut Gustave Roussy, Villejuif, France.

Abstract

Transgene expression after the administration of recombinant adenovirus with E1 deleted is constantly transient. It is admitted that E1A-substituting activities of cellular or viral origin allow viral antigen synthesis and trigger cytotoxic lymphocyte-mediated clearance of the recipient cells. Our approach to solving this problem relies on the additional deletion of the E4 region from the vector backbone as this region upregulates viral gene expression at both transcriptional and posttranscriptional levels. As a prerequisite to the construction of E1 E4 doubly defective adenoviruses, we investigated the possibility of transcomplementing both functions within a single cell. In particular, the distal ORF6+ORF7 segment from the E4 locus of adenovirus type 5 was cloned under the control of the dexamethasone-inducible mouse mammary tumor virus long terminal repeat. Following transfection into 293 cells, clone IGRP2 was retained and characterized as it can rescue the growth defect of all E1+ E4- adenoviral deletants tested. DNA and RNA analysis experiments verified that the mouse mammary tumor virus promoter drives the expression of the ORF6+ORF7 unit and permits its bona fide alternative splicing, generating ORF6/7 mRNA in addition to the ORF6-expressing primary transcript. Importantly, IGRP2 cells sustain cell confluence for a period longer than that of 293 parental cells and allow the plaque purification of E1- or E4- defective viruses. The dual expression of E1 and E4 regulatory genes within IGRP2 cells is demonstrated by the construction, plaque purification, and helper-free propagation of recombinant lacZ-encoding doubly defective adenoviruses harboring different E4 deletions. In addition, the emergence, if any, of replicative particles during viral propagation in this novel packaging cell line will be drastically impaired as only a limited segment of E4 has been integrated.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction and application of adenoviral vectors;Molecular Therapy - Nucleic Acids;2023-12

2. Product-Related Impurities in Therapeutic Virus Bioprocessing;Bioprocess and Analytics Development for Virus-based Advanced Therapeutics and Medicinal Products (ATMPs);2023

3. Adenoviral vector-based strategies against infectious disease and cancer;Human Vaccines & Immunotherapeutics;2016-04-22

4. Adenovirus-Mediated Gene Transfer;Methods in Molecular Biology;2010-10-04

5. Adenoviral Producer Cells;Viruses;2010-08-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3