Affiliation:
1. Laboratoire des Virus Oncogènes, 1301/Rhône-Poulenc Rorer Gencell, Institut Gustave Roussy, Villejuif, France.
Abstract
Transgene expression after the administration of recombinant adenovirus with E1 deleted is constantly transient. It is admitted that E1A-substituting activities of cellular or viral origin allow viral antigen synthesis and trigger cytotoxic lymphocyte-mediated clearance of the recipient cells. Our approach to solving this problem relies on the additional deletion of the E4 region from the vector backbone as this region upregulates viral gene expression at both transcriptional and posttranscriptional levels. As a prerequisite to the construction of E1 E4 doubly defective adenoviruses, we investigated the possibility of transcomplementing both functions within a single cell. In particular, the distal ORF6+ORF7 segment from the E4 locus of adenovirus type 5 was cloned under the control of the dexamethasone-inducible mouse mammary tumor virus long terminal repeat. Following transfection into 293 cells, clone IGRP2 was retained and characterized as it can rescue the growth defect of all E1+ E4- adenoviral deletants tested. DNA and RNA analysis experiments verified that the mouse mammary tumor virus promoter drives the expression of the ORF6+ORF7 unit and permits its bona fide alternative splicing, generating ORF6/7 mRNA in addition to the ORF6-expressing primary transcript. Importantly, IGRP2 cells sustain cell confluence for a period longer than that of 293 parental cells and allow the plaque purification of E1- or E4- defective viruses. The dual expression of E1 and E4 regulatory genes within IGRP2 cells is demonstrated by the construction, plaque purification, and helper-free propagation of recombinant lacZ-encoding doubly defective adenoviruses harboring different E4 deletions. In addition, the emergence, if any, of replicative particles during viral propagation in this novel packaging cell line will be drastically impaired as only a limited segment of E4 has been integrated.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
125 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Construction and application of adenoviral vectors;Molecular Therapy - Nucleic Acids;2023-12
2. Product-Related Impurities in Therapeutic Virus Bioprocessing;Bioprocess and Analytics Development for Virus-based Advanced Therapeutics and Medicinal Products (ATMPs);2023
3. Adenoviral vector-based strategies against infectious disease and cancer;Human Vaccines & Immunotherapeutics;2016-04-22
4. Adenovirus-Mediated Gene Transfer;Methods in Molecular Biology;2010-10-04
5. Adenoviral Producer Cells;Viruses;2010-08-16