Substitution of the Bordetella pertussis Lipid A Phosphate Groups with Glucosamine Is Required for Robust NF-κB Activation and Release of Proinflammatory Cytokines in Cells Expressing Human but Not Murine Toll-Like Receptor 4-MD-2-CD14

Author:

Marr Nico1,Hajjar Adeline M.2,Shah Nita R.1,Novikov Alexey3,Yam Cathy S.2,Caroff Martine3,Fernandez Rachel C.1

Affiliation:

1. Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia, Canada

2. Department of Medicine, University of Washington, Seattle, Washington

3. Equipe Structure et Activités des Endotoxines, UMR 8621 du Centre National de la Recherche Scientifique, IGM, Université de Paris-Sud-XI, Orsay, France

Abstract

ABSTRACT Bordetella pertussis endotoxin is a key modulator of the host immune response, mainly due to the role of its lipid A moiety in Toll-like receptor 4 (TLR4)-mediated signaling. We have previously demonstrated that the lipid A phosphate groups of B. pertussis BP338 can be substituted with glucosamine in a BvgAS-regulated manner. Here we examined the effect of this lipid A modification on the biological activity of B. pertussis endotoxin. We compared purified endotoxin and heat-killed B. pertussis BP338 whole cells that have modified lipid A phosphate groups to an isogenic mutant lacking this modification with respect to their capacities to induce the release of inflammatory cytokines by human and murine macrophages and to participate in the TLR4-mediated activation of NF-κB in transfected HEK-293 cells. We found inactivated B. pertussis cells to be stronger inducers of proinflammatory cytokines in THP-1-derived macrophages when lipid A was modified. Most notably, lack of lipid A modification abolished the ability of purified B. pertussis endotoxin to induce the release of inflammatory cytokines by human THP-1-derived macrophages but led to only slightly reduced inflammatory cytokine levels when stimulating murine (RAW 264.7) macrophages. Accordingly, upon stimulation of HEK-293 cells with inactivated bacteria and purified endotoxin, lack of lipid A modification led to impaired NF-κB activation only when human, and not when murine, TLR4-MD-2-CD14 was expressed. We speculate that in B. pertussis , lipid A modification has evolved to benefit the bacteria during human infection by modulating immune defenses rather than to evade innate immune recognition.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3