Regulation of histidinol phosphate aminotransferase synthesis by tryptophan in Bacillus subtilis

Author:

Weigent D A,Nester E W

Abstract

The effect of tryptophan on the synthesis of histidinol phosphate aminotransferase and prephenate dehydrogenase has been examined. The genes specifying two enzymes for tryptophan biosynthesis (anthranilate synthase and tryptophan synthase-B) were found to be derepressed in a temporal sequence according to their chromosomal location. The genes for histidinol phosphate aminotransferase and prephenate dehydrogenase were derepressed simultaneously approximately 8 min after tryptophan synthase-B. When excess tryptophan was added to a derepressed culture, the pattern of repression of trpE (anthranilate synthase), trpB (tryptophan synthase-B), hisH (histidinol phosphate aminotransferase), and tyrA (prephenate dehydrogenase) was found to be simultaneous. Methyl tryptophan-resistant mutants, which synthesize elevated levels of the tryptophan enzymes, also synthesized elevated levels of histidinol phosphate aminotransferase. Qualitatively similar data were obtained in a temperature-sensitive tryptophanyl-transferase ribonucleic acid synthetase mutant grown at elevated temperatures. The time at which messenger ribonucleic acid was synthesized for anthranilate synthase, tryptophan synthase-B, histidinol phosphate aminotransferase, and prephenate dehydrogenase in the presence of actinomycin D indicated that ordered enzyme synthesis was a result of ordered transcription of the corresponding portion of the genome. The effect of the drug rifampin on enzyme synthesis was also examined. The addition of this drug halted the transcription of anthranilate synthase very rapidly, but later regions of the tryptophan region continued to be transcribed. The transcription of the hisH and tyrA genes was also shut off rapidly after rifampin was added. The significance of these observations to the control of transcription of the hisH gene by tryptophan is discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference27 articles.

1. Release of polarity in E. coli by gene N of phage X;Adhya S.;Proc. Natl. Acad. Sci. U.S.A.,1974

2. The order of induction and deinduction of the enzymes of the lactose operon in E. coli;Alpers D. H.;Proc. Natl. Acad. Sci. U.S.A.,1965

3. Coordinate repression of the synthesis of four histidine biosynthetic enzymes by histidine;Ames B. N.;Proc. Natl. Acad. Sci. U.S.A.,1959

4. Le groupe des genes regissant la biosynthese du tryptophane chez Bacillus subtilis;Anagnostopoulos C.;C. R. Acad. Sci. Ser. D,1967

5. Cross-pathway regulation: tryptophan-mediated control of histidine and arginine biosynthetic enzymes in Neurospora crassa. J;Carsiotis M.;Bacteriol.,1974

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3