trans -Acting Mutations in Loci Other than kdpDE That Affect kdp Operon Regulation in Escherichia coli : Effects of Cytoplasmic Thiol Oxidation Status and Nucleoid Protein H-NS on kdp Expression

Author:

Sardesai Abhijit A.1,Gowrishankar J.12

Affiliation:

1. Centre for Cellular and Molecular Biology, Hyderabad 500 007,1 and

2. Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 076,2 India

Abstract

ABSTRACT Transcription of the K + transport operon kdp in Escherichia coli is induced during K + -limited growth by the action of a dual-component phosphorelay regulatory system comprised of a sensor kinase (integral membrane protein), KdpD, and a DNA-binding response regulator (cytoplasmic protein), KdpE. In this study, we screened for new dke (named dke for decreased kdp expression) mutations (in loci other than kdpDE ) that led to substantially decreased kdp expression. One dke mutation was shown to be in hns , encoding the nucleoid protein H-NS. Another dke mutation was mapped to trxB (encoding thioredoxin reductase), and an equivalent reduction in kdp expression was demonstrated also for trxA mutants that are deficient in thioredoxin 1. Exogenously provided dithiothreitol rescued the kdp expression defect in trxB but not trxA mutants. Neither trxB nor trxA affected gene regulation mediated by another dual-component system tested, EnvZ-OmpR. Mutations in genes dsbC and dsbD did not affect kdp expression, suggesting that the trx effects on kdp are not mediated by alterations in protein disulfide bond status in the periplasm. Reduced kdp expression was observed even in a trxB strain that harbored a variant KdpD polypeptide bearing no Cys residues. A trxB hns double mutant was even more severely affected for kdp expression than either single mutant. The dke mutations themselves had no effect on strength of the signal controlling kdp expression, and constitutive mutations in kdpDE were epistatic to hns and trxB . These results indicate that perturbations in cytoplasmic thiol oxidation status and in levels of the H-NS protein exert additive effects, direct or indirect, at a step(s) upstream of KdpD in the signal transduction pathway, which significantly influence the magnitude of KdpD kinase activity obtained for a given strength of the inducing signal for kdp transcription.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3