Pseudomonas aeruginosa heme metabolites biliverdin IXβ and IXδ are integral to lifestyle adaptations associated with chronic infection

Author:

Shahzad Saba1,Krug Samuel A.1,Mouriño Susana1,Huang Weiliang1,Kane Maureen A.1ORCID,Wilks Angela1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA

Abstract

ABSTRACT Pseudomonas aeruginosa is a versatile opportunistic pathogen requiring iron for its survival and virulence within the host. The ability to switch to heme as an iron source and away from siderophore uptake provides an advantage in chronic infection. We have recently shown the extracellular heme metabolites biliverdin IXβ (BVIXβ) and BVIXδ positively regulate the heme-dependent cell surface signaling cascade. We further investigated the role of BVIXβ and BVIXδ in cell signaling utilizing allelic strains lacking a functional heme oxygenase ( hemO in) or one reengineered to produce BVIXα ( hemO α). Compared to PAO1, both strains show a heme-dependent growth defect, decreased swarming and twitching, and less robust biofilm formation. Interestingly, the motility and biofilm defects were partially rescued on addition of exogenous BVIXβ and BVIXδ. Utilizing liquid chromatography-tandem mass spectrometry, we performed a comparative proteomics and metabolomics analysis of PAO1 versus the allelic strains in shaking and static conditions. In shaking conditions, the hemO allelic strains showed a significant increase in proteins involved in quorum sensing, phenazine production, and chemotaxis. Metabolite profiling further revealed increased levels of Pseudomonas quinolone signal and phenazine metabolites. In static conditions, we observed a significant repression of chemosensory pathways and type IV pili biogenesis proteins as well as several phosphodiesterases associated with biofilm dispersal. We propose BVIX metabolites function as signaling and chemotactic molecules integrating heme utilization as an iron source into the adaptation of P. aeruginosa from a planktonic to sessile lifestyle. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa causes long-term chronic infection in the airways of cystic fibrosis patients. The ability to scavenge iron and to establish chronic infection within this environment coincides with a switch to utilize heme as the primary iron source. Herein, we show the heme metabolites biliverdin beta and delta are themselves important signaling molecules integrating the switch in iron acquisition systems with cooperative behaviors such as motility and biofilm formation that are essential for long-term chronic infection. These significant findings will enhance the development of viable multi-targeted therapeutics effective against both heme utilization and cooperative behaviors essential for survival and persistence within the host.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3