Pathogenesis of tuberculosis in mice exposed to low and high doses of an environmental mycobacterial saprophyte before infection

Author:

Hernandez-Pando R1,Pavön L1,Arriaga K1,Orozco H1,Madrid-Marina V1,Rook G1

Affiliation:

1. Department of Pathology, Instituto Nacional de la Nutricion Salvador Zubiran, Mexico City, Mexico.

Abstract

Mycobacteria are ubiquitous in the environment, but they are not part of the normal human microbial flora. It has been suggested that variable contact with mycobacteria can influence susceptibility to mycobacterial pathogens and the efficacy of subsequent Mycobacterium bovis BCG vaccination. To test this, mice were immunized with high or low doses of an environmental saprophyte, M. vaccae, that is intensely immunogenic as an autoclaved preparation. Two months later, they received an intratracheal challenge with M. tuberculosis H37Rv. Recipients of a low Th1-inducing dose (10(7) organisms) were partially protected and maintained a high ratio of interleukin 2 (IL-2)-positive to IL-4-positive cells in the perivascular, peribronchial, and granulomatous areas of the lung, whereas in unimmunized controls the IL-4-positive cells increased markedly between days 21 and 28. In contrast, recipients of the high dose (10(9) organisms), which primes Th2 as well as Th1 cytokine production, died more rapidly than unimmunized controls and showed massive pneumonia from day 7. The ratio of IL-2-positive to IL-4-positive cells in all compartments of the lung rapidly fell to 1 by day 14 for these animals. These events correlated with cytokine mRNA profiles and with increases in the local toxicity of tumor necrosis factor alpha (TNF-alpha), demonstrable only when a major Th2 component was present. These data indicate that cross-reactive epitopes present in an environmental saprophyte can evoke either protective responses or responses that increase susceptibility to M. tuberculosis. The latter are associated with the presence of a Th2 component and increased sensitivity to TNF-alpha.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3