Nutritional regulation of yeast delta-9 fatty acid desaturase activity

Author:

Bossie M A1,Martin C E1

Affiliation:

1. Bureau of Biological Research, Nelson Laboratories, Rutgers University, Piscataway, New Jersey 08855-1059.

Abstract

The addition of unsaturated fatty acids to cultures of Saccharomyces cerevisiae significantly altered the microsomal lipid composition. Supplementation with either of the naturally occurring palmitoleic (16:1) or oleic (18:1) acids caused increased levels in membrane phospholipids and reduced levels of the complementary acid. Growth in the presence of equimolar quantities of 16:1 and 18:1 acids, however, produced a fatty acid composition similar to that found in unsupplemented cell membranes. Linoleic acid (18:2) was not found in S. cerevisiae grown under normal conditions. It was preferentially internalized and incorporated into microsomes, however, at levels exceeding 50% of the total fatty acid species. This resulted in an almost total loss of 16:1 and a reduction of 18:1 to 25% of its normal level. The delta-9 fatty acid desaturase, a microsomal enzyme that forms 16:1 and 18:1 from saturated acyl coenzyme A precursors, was affected by the presence of exogenous fatty acids. Enzyme activity toward the 16:0 coenzyme A substrate was elevated in microsomes from saturated-fatty-acid-supplemented cultures and sharply repressed following the addition of unsaturated fatty acids, including 18:2. Northern (RNA blot) and slot-blot analyses of mRNA encoded by the OLE1 gene, which appears to be the structural gene for the delta-9 desaturase, indicated that it was sharply reduced in unsaturated-fatty-acid-fed cells. These data suggest that a significant part of the regulation involves modulation of available transcripts.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3