Characterization of a High-Molecular-Weight Notch Complex in the Nucleus of Notch ic -Transformed RKE Cells and in a Human T-Cell Leukemia Cell Line

Author:

Jeffries Shawn1,Robbins David J.1,Capobianco Anthony J.1

Affiliation:

1. Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0524

Abstract

ABSTRACT Notch genes encode a family of transmembrane proteins that are involved in many cellular processes, such as differentiation, proliferation, and apoptosis. It is well established that all four Notch genes can act as oncogenes; however, the mechanism by which Notch proteins transform cells remains unknown. Previously, we reported that both nuclear localization and transcriptional activation are required for neoplastic transformation of RKE cells. Furthermore, we identified cyclin D1 as a direct transcriptional target of constitutively active Notch molecules. In an effort to understand the mechanism by which Notch functions in the nucleus, we sought to determine if Notch formed stable complexes using size exclusion chromatography. Herein, we report that the Notch intracellular domain (N ic ) forms distinct high-molecular-weight complexes in the nuclei of transformed RKE cells. The largest complex is approximately 1.5 MDa and contains both endogenous CSL (for CBF1, Suppressor of Hairless, and Lag-1) and Mastermind-Like-1 (Maml). N ic molecules that do not have the high-affinity binding site for CSL (RAM) retain the ability to associate with CSL in a stable complex through interactions involving Maml. However, Maml does not directly bind to CSL. Furthermore, Maml can rescue ΔRAM transcriptional activity on a CSL-dependent promoter. These results indicate that deletion of the RAM domain does not equate to CSL-independent signaling. Moreover, in SUP-T1 cells, N ic exists exclusively in the largest N ic -containing complex. SUP-T1 cells are derived from a T-cell leukemia that harbors the t(7;9)(q34;q34.3) translocation and constitutively express N ic . Taken together, our data indicate that complex formation is likely required for neoplastic transformation by Notch ic .

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3