The Immunosuppressant Rapamycin Mimics a Starvation-Like Signal Distinct from Amino Acid and Glucose Deprivation

Author:

Peng Tao1,Golub Todd R.2,Sabatini David M.1

Affiliation:

1. Whitehead Institute, Cambridge, Massachusetts 02142

2. Center for Genome Research, Whitehead Institute, Cambridge, Massachusetts 02139

Abstract

ABSTRACT RAFT1/FRAP/mTOR is a key regulator of cell growth and division and the mammalian target of rapamycin, an immunosuppressive and anticancer drug. Rapamycin deprivation and nutrient deprivation have similar effects on the activity of S6 kinase 1 (S6K1) and 4E-BP1, two downstream effectors of RAFT1, but the relationship between nutrient- and rapamycin-sensitive pathways is unknown. Using transcriptional profiling, we show that, in human BJAB B-lymphoma cells and murine CTLL-2 T lymphocytes, rapamycin treatment affects the expression of many genes involved in nutrient and protein metabolism. The rapamycin-induced transcriptional profile is distinct from those induced by glucose, glutamine, or leucine deprivation but is most similar to that induced by amino acid deprivation. In particular, rapamycin treatment and amino acid deprivation up-regulate genes involved in nutrient catabolism and energy production and down-regulate genes participating in lipid and nucleotide synthesis and in protein synthesis, turnover, and folding. Surprisingly, however, rapamycin had effects opposite from those of amino acid starvation on the expression of a large group of genes involved in the synthesis, transport, and use of amino acids. Supported by measurements of nutrient use, the data suggest that RAFT1 is an energy and nutrient sensor and that rapamycin mimics a signal generated by the starvation of amino acids but that the signal is unlikely to be the absence of amino acids themselves. These observations underscore the importance of metabolism in controlling lymphocyte proliferation and offer a novel explanation for immunosuppression by rapamycin.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3