Identification of a Chromosome-Targeting Domain in the Human Condensin Subunit CNAP1/hCAP-D2/Eg7

Author:

Ball, Alexander R.1,Schmiesing John A.1,Zhou Changcheng1,Gregson Heather C.1,Okada Yoshiaki2,Doi Takefumi2,Yokomori Kyoko1

Affiliation:

1. Department of Biological Chemistry, College of Medicine, University of California, Irvine, California 92697-1700

2. Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract

ABSTRACT CNAP1 (hCAP-D2/Eg7) is an essential component of the human condensin complex required for mitotic chromosome condensation. This conserved complex contains a structural maintenance of chromosomes (SMC) family protein heterodimer and three non-SMC subunits. The mechanism underlying condensin targeting to mitotic chromosomes and the role played by the individual condensin components, particularly the non-SMC subunits, are not well understood. We report here characterization of the non-SMC condensin component CNAP1. CNAP1 contains two separate domains required for its stable incorporation into the complex. We found that the carboxyl terminus of CNAP1 possesses a mitotic chromosome-targeting domain that does not require the other condensin components. The same region also contains a functional bipartite nuclear localization signal. A mutant CNAP1 missing this domain, although still incorporated into condensin, was unable to associate with mitotic chromosomes. Successful chromosome targeting of deletion mutants correlated with their ability to directly bind to histones H1 and H3 in vitro. The H3 interaction appears to be mediated through the H3 histone tail, and a subfragment containing the targeting domain was found to interact with histone H3 in vivo. Thus, the CNAP1 C-terminal region defines a novel histone-binding domain that is responsible for targeting CNAP1, and possibly condensin, to mitotic chromosomes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3