Stabilization of ATF5 by TAK1–Nemo-Like Kinase Critically Regulates the Interleukin-1β-Stimulated C/EBP Signaling Pathway

Author:

Zhang Ze-Yan1,Li Shang-Ze1,Zhang Hui-Hui1,Wu Qu-Ran1,Gong Jun1,Liang Tong1,Gao Lu2,Xing Na-Na1,Liu Wen-Bin3,Du Run-Lei1,Zhang Xiao-Dong1

Affiliation:

1. College of Life Sciences, Wuhan University, Wuhan, China

2. Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, China

3. College of Health Sciences and Nursing, Wuhan Polytechnic University, Wuhan, China

Abstract

ABSTRACT Interleukin-1β (IL-1β) is a key proinflammatory cytokine that initiates several signaling cascades, including those involving CCAAT/enhancer binding proteins (C/EBPs). The mechanism by which IL-1β propagates a signal that activates C/EBP has remained elusive. Nemo-like kinase (NLK) is a mitogen-activated protein kinase (MAPK)-like kinase associated with many pathways and phenotypes that are not yet well understood. Using a luciferase reporter screen, we found that IL-1β-induced C/EBP activation was positively regulated by NLK. Overexpression of NLK activated C/EBP and potentiated IL-1β-triggered C/EBP activation, whereas knockdown or knockout of NLK had the opposite effect. NLK interacted with activating transcription factor 5 (ATF5) and inhibited the proteasome-dependent degradation of ATF5 in a kinase-independent manner. Consistently, NLK deficiency resulted in decreased levels of ATF5. NLK cooperated with ATF5 to activate C/EBP, whereas NLK could not activate C/EBP upon knockdown of ATF5. Moreover, TAK1, a downstream effector of IL-1β that acts upstream of NLK, mimicked the ability of NLK to stabilize ATF5 and activate C/EBP. Thus, our findings reveal the TAK1-NLK pathway as a novel regulator of basal or IL-1β-triggered C/EBP activation though stabilization of ATF5.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3