Mesoscopic Energy Minimization Drives Pseudomonas aeruginosa Biofilm Morphologies and Consequent Stratification of Antibiotic Activity Based on Cell Metabolism

Author:

Sheraton M. V.12,Yam J. K. H.3,Tan C. H.34,Oh H. S.3,Mancini E.5,Yang L.36ORCID,Rice S. A.367ORCID,Sloot P. M. A.158

Affiliation:

1. Complexity Institute, Nanyang Technological University, Singapore

2. HEALTHTECH NTU, Interdisciplinary Graduate School, Nanyang Technological University, Singapore

3. Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore

4. School of Materials Science and Engineering, Nanyang Technological University, Singapore

5. Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands

6. The School of Biological Sciences, Nanyang Technological University, Singapore

7. The ithree Institute, The University of Technology, Sydney, NSW, Australia

8. ITMO University, Saint Petersburg, Russian Federation

Abstract

ABSTRACT Segregation of bacteria based on their metabolic activities in biofilms plays an important role in the development of antibiotic resistance. Mushroom-shaped biofilm structures, which are reported for many bacteria, exhibit topographically varying levels of multiple drug resistance from the cap of the mushroom to its stalk. Understanding the dynamics behind the formation of such structures can aid in design of drug delivery systems, antibiotics, or physical systems for removal of biofilms. We explored the development of metabolically heterogeneous Pseudomonas aeruginosa biofilms using numerical models and laboratory knockout experiments on wild-type and chemotaxis-deficient mutants. We show that chemotactic processes dominate the transformation of slender and hemispherical structures into mushroom structures with a signature cap. Cellular Potts model simulation and experimental data provide evidence that accelerated movement of bacteria along the periphery of the biofilm, due to nutrient cues, results in the formation of mushroom structures and bacterial segregation. Multidrug resistance of bacteria is one of the most threatening dangers to public health. Understanding the mechanisms of the development of mushroom-shaped biofilms helps to identify the multidrug-resistant regions. We decoded the dynamics of the structural evolution of bacterial biofilms and the physics behind the formation of biofilm structures as well as the biological triggers that produce them. Combining in vitro gene knockout experiments with in silico models showed that chemotactic motility is one of the main driving forces for the formation of stalks and caps. Our results provide physicists and biologists with a new perspective on biofilm removal and eradication strategies.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3